
Надійність програмного забезпечення 103

UDC 004.412:519.876.5

V.O. MISHCHENKO

V.N. Karazin Kharkov National University, Ukraine

DOES THE DIFFERENT DEFINITIONS OF ADA PROGRAM TOKENS
HAVE SIGNIFICANT DIFFERENCE?

M. Halstead’s Software Science is the origin of some program metrics. Among them are well-known as well as
new measures. Their evaluation is commonly used a counting strategy, i.e. a definition of Halstead’s tokens of a
programming language. We study the differences between the two strategies for Ada programming language,
one base on compiler oriented approach (1987) and the other base on human oriented approach (2007). Analyti-
cal consideration and testing both shows the first strategy gives higher values of program vocabulary (excess is
usually moderate). It is more difficult to compare the respective estimations of program length. Under certain
conditions, they approximately equal. Despite the different approaches, the recent counting strategy for Ada 95
(2004-07) seems sufficiently coherent to the previously tested strategy for Ada 83 (1987).

program metrics, Software Science, Ada, tokens, counting strategy, program vocabulary, program length

Introduction

Software science measures [1] have well known

since the publication of works Maurice Halstead [2-3].

Recently, the author of the article proposed to modern-

ize some of these metrics and introduce new ones [4-6].
Calculation of metrics, according to the origins of soft-

ware science, generally requires knowledge of the pro-

gram (module) vocabulary and length. We can compute

these primitives by counting operators and operands that

are special tokens of programming language. According

Halstead idea, the tokens are graphic images of seman-

tic elements, which combines programmer.

Interest in the use of metrics discussed above auto-

matically makes the task of setting the counting strate-

gies for tokens of modern programming languages. We

considered this to Ada 95 language and defined the

counting strategy, which satisfy the general principles.

The purpose of this article is a clarification of our

counting strategy of consistency with the earlier defini-

tion of a strategy for Ada 83. In particular, it is useful to

know under what conditions the two strategies can be

seen as mutually substitutable for the Ada programs,

which satisfy the standard from 1983.

Short history of problem

The counting strategy for the full Ada 83 was pub-

lished by D. Miller, R. Maness, J. Howatt, and W. Shaw

[7]. These authors tested initially two heuristic ap-

proaches, which proved unsatisfactory. Only third,

based on the BNF description of Ada, had led them to

the satisfactory counting strategy [7]. The authors ar-

gued the following statement. If any investigator ex-

pects to obtain useful estimates, he must count tokens of

all program including declarations as well as executable

code [7].

Note that one of essential problems of the work [7],

that is which tokens are operators, is not important to us

because our energy approach avoids it [4].

On the other hand, the “biggest problem” in [7] of

classification multi-token language constructions is

relevant in any attempt to define a counting strategy.

Works [7] and [5-6] both use the standard description

language syntax for Ada to solve the problem. But they

do so in different ways according to different concepts.

It is remarkable that authors of [7] not interested for

psychological complexity of Ada programs. Instead of

this, they investigated the utility of software science

© V.O. Mishchenko
РАДІОЕЛЕКТРОННІ І КОМП’ЮТЕРНІ СИСТЕМИ, 2008, № 7 (34)

Надійність програмного забезпечення 104

measures in estimating the resources needed by Ada

compilers to translate Ada programs. As a result, they

have identified the suitable counting strategy by using

the same syntax charts that developers have used in de-

signing Ada compilers. Hence we can say that counting

strategy of [7] is compiler oriented.

Defining counting strategy for Ada 95, works [5-6]

originated from the submissions more traditional for

software science [4, 6]. Correct implementation of one

of those rules requires careful matching tokens with the

formal syntax and some of the contextual rules [6].

Nevertheless, this approach should be considered as

human-oriented one.

Our tasks

To achieve the goal specified in the introduction

should perform the following tasks:

− nalyze for each kind tokens from the [7], how

it agreed with the definition of tokens from [5],

− predict the nature of the probable evolution of

the program vocabulary value (and the length of the

program) when you change one strategy to another,

− ascertain the conditions under which the results

of measurements on the two strategies should not vary

significantly,

− verify the theoretical conclusions with exam-

ples of Ada programs.

Analytical Considerations

The Ada 95 language is a strict extension of the Ada

83 language. That’s why we expect that the program

under consideration be subject to the standard 1983.
We suspect that the calculations of software primitives

to be made separately for each of the compilation units

of the program.

To carry out our first task, we will consider the dif-

ferences between the two strategies in order of the list of

rules as defined in the Appendix A of the article [7].

1. Comments are not considered in the compiler-

oriented strategy. It almost does not change the vocabu-

lary, but could appreciably reduce the length.

2. The second group of rules of the compiler-

oriented strategy provides important distinguishing fea-

ture. Local variables with the same name in different

program modules (loops, blocks) are counted as unique

tokens. This leads to an increase in the size of the vo-

cabulary, without affecting the length of the program.

3. The third rule lists 20 the reserved word combina-

tions that they counted as multi-word tokens. Half of

them have the same status as in the use of human-

oriented strategy. In seven cases, the word combinations

have close interpretation in both counting strategies:

array of do end for in loop end loop

while loop end loop body is exception when

case when end case (1)

Only three combinations,

and then or else limited private, (2)

are not included in human-oriented strategy. Reserve

words that form them are separate tokens. Change strat-

egy (compiler-oriented instead of human-oriented)

would lead to such changes. Vocabulary little change.

The length of the program would increase for two of

combinations (1)-(2). For the six combinations it will

decrease. In other cases, the length will not change.

4. In this group, there are nine rules. Of these, the

third, fifth, sixth, seventh rules lead to increase the size

of the dictionary. The ninth rule increases the length of

the program unit (adding 1), but only for subunits. The

third rule is most remarkable. It establishes that paren-

theses can play the role of eight different program to-

kens, depending on the context.

5. Tokens of this group are reserved words and de-

limiters. Their interpretations by the two strategies have

been the same or close in 60 cases out of 62. The excep-

tions are the words "is" and "end", which are considered

by the human-oriented strategy only in combinations of

reserved words. When rules of this group are applicable,

the program vocabulary and length obtain almost equal

increment in the use of any of the two strategies.

6. This rule does not affect the counting of the

length and vocabulary.

Надійність програмного забезпечення 105

7. Each distinctly declared module identifier is

counted as a separate program token. Therefore, unlike

the human-oriented strategy, all overloaded declarations

of the same subprogram identifier are considered to

generate different tokens. Similarly, a type declaration

is counted either as one or another kind of tokens de-

pending on its use. It is considered of one kind in its

own declaration, but it is considered as token of differ-

ent kind when it types a variable (function, subtype).
This approach increases the size of the vocabulary, but

does not affect the length of the program.

8. For each construction of Ada language, which is

called generic instantiation, the length increases by one.

This reduces the length compared with the human-

oriented strategy. Impact on counting vocabulary de-

pends on context. The difference may be of any sign,

but it should be a small within the compilation unit.

Now we can move on to solve our second task

Consider a compilation unit. Introduce the following

designations:

1n – the program vocabulary, which is calculated

using the compiler-oriented strategy,

1L – the length of program, which is calculated us-

ing the compiler-oriented strategy,

2n – the program vocabulary, which is calculated

using the human-oriented strategy,

2L – the length of program, which is calculated us-

ing the human-oriented strategy.

Statement 1. Almost always the case there is fol-

lowing inequality

 21 nn > . (3)

In order to make sure, it is enough to see above eight

paragraphs.

Statement 2. Let the compilation unit contains no

comments. It is probably the following approximate

equality

 21 LL ≈ . (4)

The proof is as follows. Above, we saw that with a

change of one strategy to another the value of the length

can change of any party by many factors. It seems that

in most cases the relevant factors are random and inde-

pendent. Then specified equality must take place in the

sense of mean values.

Knowing what explains the difference between the

two strategies, one can specify the conditions under

which this difference will be minimal.

Statement 3. In order to inequality (3) reduced to

the approximate equality, it is necessary to require the

following.

1. Any body of the program unit must be realized

as separately compiled unit.

2. All types declarations should be concentrated in

declarations of some library packages, and others pack-

ages should be involves all subprograms and tasks.

3. In the same package declarations we should not

meet arrays and enumerations. Aggregates should not

used in a library package declaration.

4. If possible, the body of the library unit (or sub-

unit) should not include simultaneously the expressions

with parentheses, array declarations, aggregates and

type conversions.

We will find little utility programs that meet all the

conditions of this approval. Let us put another state-

ment.

Statement 4. Consider those compilation units, in

which number of declarations is limited by the same

constant. If the vocabulary of the unit will be large

enough, the value of error

2

12
n

nn −
 (5)

will be small.

Proof of the last two allegations based on the view-

ing list of the differences between the strategies that we

have given above.

Statement 5. Let the program does not contain

comments and combinations of words from the lists of

(1)-(2) (or provides them little). Then accuracy of equal-

ity (4) should be high. This assertion is evident. It can

be enhanced by adding other conditions, which exclude

the practical differences between the two strategies.

Надійність програмного забезпечення 106

Testing

In general, prior statements should not be supple-

mented accurate estimates. But they can be supple-

mented by the consideration of examples.

We use the fact that the authors of the compiler-

oriented strategy gave two examples of calculations in

his work [7]. We conducted calculation of the human-

oriented strategy with the help of our application, which

is described in [5]. The results are contained in Table 1.

Table 1
Comparison of the results for the two strategies

Name in

Appendix B

1n 2n 1L 2L

Example 1

(NRPCA1)

54 47 191 203

Example 2

(OPCEA1)

48 46 203 205

We do not have the instrument for the measurements

according the strategy of [7]. Therefore, the analysis

was limited to eight examples compilation units, which

took many forms prescribed in the Ada language. The

size of each unit ranged from 15 to 150 lines of code.

Differences in the size of the dictionary accounted for 5-

20%.The length varied within 7.5%.

Conclusion

Although considered counting strategies based on dif-

ferent principles, the results of their application strictly

comparable. It is probably because, in both cases, these

principles have been carefully aligned with the standard

description of programming language syntax.

An interesting consequence is the following. The

compiler-oriented strategy was designed so that the Hal-

stead metrics allowed assessing the resources necessary

to Ada compiler. But a measurements using human ori-

ented strategy are well correlated with measurements of

the compiler-oriented strategy on a broad class of com-

pilation units. This suggests that the property of the

compiler-oriented strategy can be seen as a test for

counting strategies that can be offered to other modern

programming languages.

References

1. IEEE Std982.2-1988. IEEE Guide of the Use of

Standard Dictionary of Measures to Produce Reliable

Software. – [Electronic Resource]. – Access mode:

http://members.aol.com/geshome/IEEE982/IEEE9822.pdf.

2. Halstead M.H. Elements of Software Science.

New-Work: Elsevier, 1977.

3. Halstead M.H. Elements of Software Science /

Translation from English to Russian by V.M. Yufa. – M.:

Finance and Statistics, 1981. – 128 p.

4. Mishchenko V. O. Mathematical model of style

Software Science for the metric analysis of complex scien-

tific programs // Bulletin of V. Karazin Kharkiv National

University, 2004. – № 629. – P. 105-111.

5. Series “Mathematical Modeling. Informational

Technologies. Automated Control Systems” Issue 3. –

P. 70-85.

6. Mishchenko V. O. One experiment in using en-

ergy metrics proposed for software process assessment //

Radio-electronic and computer systems. – 2007. – № 8. –

P. 121-124.

7. Mishchenko V. O. Energy Analysis of Software

with examples of how it is applied to Ada programs. –

Kharkov: Karazin KhNU, 2007. – 9 p.

8. D.M. Miller, R.S. Maness, J.W. Howatt, W.H.

Shaw A software science counting strategy for the full Ada

language //ACM SIGPLAN Notices, May 1987. – V. 22,

Is. 5, ISSN:0362-1340. – P. 32-41.

Надійшла до редакції 11.02.2008

Рецензент: д-р техн. наук, проф. Б.М. Конорев,
Національний аерокосмічний університет
ім. М.Є. Жуковського «ХАІ», Харків.

