УДК 681.5 : 656.257

М.Л. МАЛИНОВСКИЙ

Харьковский национальный технический университет сельского хозяйства им. Петра Василенко, Украина

МАТЕМАТИЧЕСКИЕ МОДЕЛИ БЕЗОПАСНЫХ ПЛИС-КОНТРОЛЛЕРОВ С ПАРАЛЛЕЛЬНОЙ АРХИТЕКТУРОЙ

Описаны абстрактные модели безопасных ПЛИС-контроллеров с параллельной архитектурой (БЛПавтоматов), представлены методы задания, описаны структурные модели и HDL-модели, представлены результаты компьютерного моделирования БЛП-автоматов.

ПЛИС-контроллеры, функциональная безопасность, БЛП-автоматы, HDL-модели

Введение

В последние годы программируемые логические интегральные схемы (ПЛИС) все более широко применяются в качестве одного из наиболее перспективных средств реализации параллельных логических автоматов. Этому способствуют значительные возможности ПЛИС в части резервирования, выполнения самодиагностики, обеспечения высокого быстродействия, надежности и т.д. Расширение областей практического использования ПЛИС делает все более актуальной задачу развития теории построения систем управления на их основе и разработки методов проектирования цифровых автоматов для реализации различных задач, в том числе для построения безопасных систем управления в энергетике, авиации, на транспорте и т.д.

Обзор публикаций. Идеология и методы построения безопасных микроэлектронных систем управления ОТП описаны в [5 – 8]. Методы безопасного сопряжения исполнительных механизмов с микроэлектронными системами управления рассмотрены в [4 – 6]. Теория синтеза безопасных систем управления ОТП приведена в [6]. Теория построения самопроверяемых управляющих автоматов описана в [9]. Проблемы безопасности программного обеспечения микропроцессорных систем рассмотрены в [3, 6]. Требования и методы испытаний микроэлектронных и микропроцессорных комплексов и систем и доказательства их функциональной безопасности и электромагнитной совместимости описаны в [1, 2].

Как показывает анализ публикаций, проблеме синтеза безопасных автоматов на основе ПЛИС внимания уделяется явно недостаточно. В частности, не описаны возможные варианты архитектуры безопасных автоматов, не достаточно подробно описаны методы их задания, не представлены текстовые описания компонентов, которые можно было бы использовать как стандартные узлы для построения безопасных автоматов и т.д.

Постановка задачи исследования. Задачей данного исследования является совершенствование методов построения безопасных ПЛИСконтроллеров с параллельной архитектурой для управления ответственными технологическими процессами (ОТП) путем разработки теоретических основ синтеза безопасных логических автоматов параллельного действия (БЛП-автоматов).

Разработка абстрактных моделей БЛП-автоматов

В соответствии с установленными требованиями, предъявляемыми к БЛП-автомату, он должен содержать автоматы-компоненты A и B, причем входные z^A , z^B и выходные w^A , w^B состояния автоматовкомпонентов *A* и *B* определяются временными параметрами входных и выходных сигналов, а внутренние состояния s^A , s^B – логическими уровнями внутренних сигналов. Функционирование абстрактных БЛП-автоматов может быть описано сетями Петри, содержащими функциональные переходы (*f*переходы) $f^{4}_{1} - f^{4}_{6}$ и $f^{B}_{1} - f^{B}_{6}$ (рис. 1). Модель, приведенная на рис. 1, а соответствует БЛП-автомату, в котором выбор более безопасного состояния зависит от предыдущего состояния – такой автомат будем называть автоматом типа БЛП-М (БЛП-автомат Мтипа). БЛП-автомат, в котором выбор более безопасного состояния не зависит от предыдущего состояния (рис. 1, б), будем называть автоматом типа БЛП-Р (БЛП-автомат Р-типа).

Рис. 1. Сети Петри, описывающие функционирование БЛП-автоматов: а – М-типа; б – Р-типа

Как видно из моделей (рис. 1), БЛП-автоматы содержат множества входных состояний Z^4 и Z^8 , множества выходных состояний W^4 и W^8 , а также множества внутренних состояний, которые можно разделить на подмножества C^4 , C^8 , D^4 , D^8 , E^4 , E^8 , F^4 , F^8 , G^4 , G^8 , соответствующие одноименным местам сети Петри. Свойства абстрактных моделей БЛП-автоматов осуществлять выбор более безопасного состояния с учетом предыдущего состояния (для М-типа) или без учета предыдущего состояния (для Р-типа) определяются тем, что в отличие от БЛП-автоматов Р-типа, автоматы М-типа содержат дуги, соединяющие места D^A с *f*-переходом f_2^A , D^B с *f*-переходом f_2^B .

Абстрактные модели БЛП-автоматов М- и Ртипов также содержат дуги, которые отмечены пунктиром и соединяют места D^{4} с переходом f_{5}^{4} и D^{B} с переходом f_{5}^{B} . Указанные дуги содержат БЛПавтоматы Мили, тогда как у БЛП-автоматов Мура эти дуги отсутствуют.

Таким образом, БЛП-автомат (рис. 1) определяется множествами

БЛП = [Z, C, D, E, F, G, H, W, φ , ω , δ , χ , λ , ψ],

где $Z = \{Z^{A}, Z^{B}\}$ – множество входных состояний, которым соответствует входной алфавит $z^{A}_{1}, ..., z^{A}_{n}$, ..., $z^{A}_{N}, z^{B}_{1}, ..., z^{B}_{n}, ..., z^{B}_{N}; W = \{W^{A}, W^{B}\}$ – множество выходных состояний, которым соответствует выходной алфавит $w^{A}_{1}, \ldots, w^{A}_{k}, \ldots, w^{A}_{K}, w^{B}_{1}, \ldots, w^{B}_{k}, \ldots,$ w^{B}_{K} ; $C = \{C^{A}, C^{B}\}$ – множество внутренних состояний, которым соответствует алфавит состояний c^{A}_{1} , ..., c^{A}_{n} , ..., c^{A}_{N} , c^{B}_{1} , ..., c^{B}_{n} , ..., c^{B}_{N} ; $D = \{D^{A}, D^{B}\}$ множество внутренних состояний, которым соответствует алфавит состояний $d^{A}_{1}, ..., d^{A}_{n}, ..., d^{A}_{N}, d^{B}_{1}$, ..., d_{n}^{B} , ..., d_{N}^{B} ; $E = \{E^{A}, E^{B}\}$ – множество внутренних состояний, которым соответствует алфавит состояний $e^{A_{1}}, \ldots, e^{A_{l}}, \ldots, e^{A_{L}}, e^{B_{1}}, \ldots, e^{B_{l}}, \ldots, e^{B_{L}}; F = \{F^{A}, F^{A_{l}}, \ldots, F^{A_{l}}\}$ F^{B} – множество внутренних состояний, которым соответствует алфавит состояний $f^{4}_{l}, \ldots, f^{4}_{l}, \ldots, f^{4}_{L}$ $f_{1}^{B}, ..., f_{l}^{B}, ..., f_{L}^{B}; G = \{G^{A}, G^{B}\}$ – множество внутренних состояний, которым соответствует алфавит состояний $g^{A_1}, \ldots, g^{A_k}, \ldots, g^{A_k}, g^{B_1}, \ldots, g^{B_k}, \ldots, g^{B_k}, \phi$ функция переходов, которая определяет состояния C^{A} , C^{B} автомата в зависимости от входных состояний Z^{4} и Z^{B} ; ω – функция переходов, которая определяет состояния D^A , D^B автомата в момент времени t в зависимости от внутренних состояний C^{4} , C^{B} , а

также состояний D^A и D^B (для автоматов М-типа) в момент времени t - 1; $\delta - \phi$ ункция переходов, которая определяет состояния E^{A} , E^{B} автомата в момент времени t в зависимости от внутренних состояний D^{A} , D^{B} и F^{A} , F^{B} в момент времени t - 1; $\chi - ф$ ункция переходов, которая определяет состояния F^{4} , F^{B} автомата в момент времени t в зависимости от внутренних состояний E^A , E^B , а также состояний F^A и F^B (для автоматов М-типа) в момент времени $t - 1; \lambda$ функция переходов, которая определяет состояния G^{A} , G^{B} автомата в момент времени t в зависимости от внутренних состояний F^{A} , F^{B} , а также состояний D^{A} и D^{B} (для автоматов Мили) в момент времени t-1; ные состояния W^A , W^B автомата в зависимости от внутренних состояний G^{A} и G^{B} .

Каждый из представленных абстрактных БЛПавтоматов имеет два входа, два выхода и работает в дискретном времени, принимающем целые неотрицательные значения t = 0, 1, 2, ... В любой момент tдискретного времени автомат находится в некотором состоянии $s(t) \in S = \{Z, C, D, E, F, G, H, W\}.$ Будучи в момент времени t в состоянии s(t), автомат способен воспринять на своем входе сигнал $z(t) \in Z$. В соответствии с функцией у в этот же момент времени он выдаст выходной сигнал $w(t) \in W$ и в следующий момент времени в соответствии с функциями переходов φ, ω, δ, χ, λ перейдет в состояние $s(t+1) \in S$. Если входные сигналы $z^{A}(t)$ и $z^{B}(t)$ окажутся неэквивалентными, переход автомата в новое (более безопасное) состояние $d(t+1) \in D$ будет осуществляться в соответствии с функцией ω, аргументами в которой являются состояния $c(t) \in C$ как компонентного автомата А, так и компонентного автомата В. Причем для БЛП-автоматов М-типа этот переход осуществляется с учетом состояния $d(t) \in D$. Аналогичным образом, если внутренние состояния компонентных автоматов А и В окажутся неэквивалентными (например, в следствие одиночного искажения переходных функций), следующее состояние автомата $f(t + 1) \in F$ будет осуществляться в соответствии с функцией χ , аргументами в которой являются состояния $e(t) \in E$ как компонентного автомата A, так и компонентного автомата B, а для БЛП-автоматов М-типа этот переход осуществляется кроме этого с учетом состояния $f(t) \in F$.

Для задания БЛП-автоматов необходимо описать все его компоненты Z, C, D, E, F, G, H, W, φ , ω , δ , χ , λ , ψ , причем для задания функций δ и λ могут использоваться те же методы, которые применяются для задания соответствующих функций традиционных конечных автоматов Мили и Мура. Таким образом, метод описания компонентов БЛП-автомата сводится к описанию функций δ и λ традиционного автомата, а также функций:

 $-\phi$ – преобразования сигнала $z \in Z$ с временными признаками состояния в сигнал $c \in C$, где в качестве признака состояния используются логические уровни сигналов (задается в соответствии с условиями временного кодирования входных сигналов);

 $-\psi$ – преобразования сигнала $g \in G$, где в качестве признака состояния используются логические уровни сигналов, в сигнал $w \in W$ с временными признаками состояния (задается в соответствии с условиями временного кодирования выходных сигналов);

 – ω и χ – преобразования внутренних состояний (задаются в соответствии с условиями, определяющими безопасность функционирования БЛПавтомата).

Предлагаемый метод задания БЛП-автоматов иллюстрируется схемой, приведенной на рис. 2. Здесь уравнения, описывающие функционирование автоматов Мили, отмечены символом ¹⁾, автоматов Мура – символом ²⁾, БЛП-автоматов М-типа – символом ³⁾, Р-типа – символом ⁴⁾.

Рис. 2. Метод задания БЛП-автоматов

Разработка структурных моделей БЛП-автоматов

Синтез структуры БЛП-автоматов сводится к синтезу логических структур и формированию взаимосвязей между следующими функциональными блоками:

 – функциональные преобразователи, обеспечивающие преобразование сигналов с временными признаками состояния в сигналы, у которых в качестве признака состояния используются их логические уровни;

 – функциональные преобразователи, обеспечивающие преобразование сигналов, у которых в качестве признака состояния используются их логические уровни, в сигналы с временными признаками состояния;

 комбинационные схемы, предназначенные для реализации соответствующих логических уравнений;

 – блоки памяти, обеспечивающие задержку внутренних сигналов на один такт работы автомата. БЛП-автоматы описываются системой логических уравнений с функциями переходов $\varphi, \omega, \delta, \chi, \lambda, \psi$. Для реализации функций φ и ψ необходимо использование функциональных преобразователей $\Phi\Pi^{4}{}_{\varphi}, \Phi\Pi^{B}{}_{\varphi}$ и $\Phi\Pi^{A}{}_{\psi}, \Phi\Pi^{B}{}_{\psi}$. Для реализации функций $\omega, \delta, \chi, \lambda$ необходимо использование комбинационных схем $KC^{4}{}_{\omega}, KC^{B}{}_{\omega}, KC^{4}{}_{\delta}, KC^{B}{}_{\delta}, KC^{A}{}_{\chi}, KC^{B}{}_{\chi}, KC^{A}{}_{\lambda}, KC^{B}{}_{\lambda}$. Для формирования внутренних состояний автомата $F^{4}{}_{t-1}, F^{B}{}_{t-1}, D^{A}{}_{t-1}, D^{B}{}_{t-1}$, которые используются в качестве аргументов в логических уравнениях, описывающих абстрактные модели БЛП-автоматов, необходимы блоки памяти $B\Pi^{4}{}_{1}, B\Pi^{B}{}_{1}, B\Pi^{A}{}_{2}, B\Pi^{B}{}_{2}$.

На рис. 3 представлена структура БЛП-автомата Мили М-типа, которая получена в результате объединения множества функциональных блоков ($\Phi\Pi^{4}_{\phi}$, $\Phi\Pi^{B}_{\phi}$, $\Phi\Pi^{4}_{\psi}$, $\Phi\Pi^{B}_{\psi}$, KC^{4}_{ω} , KC^{B}_{ω} , KC^{4}_{δ} , KC^{B}_{δ} , KC^{4}_{χ} , KC^{B}_{χ} , KC^{A}_{λ} , KC^{B}_{λ} , $B\Pi^{A}_{1}$, $B\Pi^{B}_{1}$, $B\Pi^{A}_{2}$, $B\Pi^{B}_{2}$). Отличие БЛП-автоматов М-типа от Р-типа состоит в наличии сигналов $q^{A}_{1}(t-1) \dots q^{A}_{N''}(t-1)$ на входах KC^{4}_{ω} и $q^{B}_{1}(t-1) \dots q^{B}_{N''}(t-1)$ на входах KC^{A}_{χ} и $y^{B}_{1}(t-1)$ $\dots y^{A}_{L'}(t-1)$ на входах KC^{B}_{χ} . Отличие БЛП-автоматов Мили от БЛП-автоматов Мура состоит в наличии сигналов $q^{A}_{1}(t-1) \dots q^{A}_{N''}(t-1)$ на входах KC^{A}_{λ} и $q^{B}_{1}(t-1) \dots q^{B}_{N''}(t-1)$ на входах KC^{A}_{λ} и $q^{B}_{1}(t-1) \dots q^{B}_{N''}(t-1)$ на входах KC^{A}_{λ} .

Логическая структура функционального преобразователя ФП_а.

Как видно из рис. 3, функция переходов φ определяет состояния C^{4} , C^{B} (которые соответствуют логическим уровням сигналов $m^{4}_{1} \dots m^{4}_{N''}$, $m^{B}_{1} \dots m^{B}_{N''}$) в зависимости от входных состояний Z^{4} и Z^{B} (которые соответствуют временным параметрам сигналов $h^{4}_{1} \dots h^{4}_{N'}$, $h^{B}_{1} \dots h^{B}_{N'}$). Для реализации функции φ используются функциональные преобразователи $\Phi \Pi^{4}_{\phi}$, $\Phi \Pi^{B}_{\phi}$. Логическая структура $\Phi \Pi_{\phi}$ зависит от метода временного кодирования входных сигналов. Одним из таких методов является использование в качестве признака состояния периода сигнала. В этом случае логическая структура функцио-

Рис. 3. Структура БЛП-автомата Мили М-типа

нального преобразователя $\Phi \Pi_{\varphi}$ может иметь вид, представленный на рис. 4.

Рис. 4. Логическая структура $\Phi \Pi_{\phi}$

Логическая структура $\Phi \Pi_{\varphi}$ включает в себя N'функциональных преобразователей (по одному на каждый входной сигнал БЛП-автомата), каждый из которых содержит:

– D-триггеры *d*1, *d*2, *d*3, *d*4;

 – N-разрядный счетчик, предназначенный для измерения периода входного сигнала; – логический преобразователь ЛП, определяющий состояние соответствующего внутреннего сигнала m в зависимости от значения периода входного сигнала;

- логические элементы И (&), ИЛИ (1).

Синхронизация работы функциональных узлов $\Phi \Pi_{\phi}$ обеспечивается с помощью тактового генератора ТГ.

Каждый из преобразователей $\Phi \Pi_{\varphi}$ помимо выходного сигнала т также содержит выходной сигнал "Ошибка", который формируется в случае несоответствия периода входного сигнала заданным показателям.

Как видно из логической структуры $\Phi \Pi_{\varphi}$, количество входных сигналов h совпадает с количеством внутренних сигналов m, т. е. для данной структуры N' = N''. В общем случае, каждому входному сигналу h может соответствовать a внутренних сигналов m: aN' = N''. При этом увеличивается количество выходов m логического преобразователя ЛП и триггеров, на выходе которых формируются сигналы m БЛП-автомата.

Логическая структура функционального преобразователя ФП_w.

Функция переходов у определяет выходные со-

стояния W^A , W^B (которые соответствуют временным параметрам сигналов $v^{A_1} \dots v^{A_{K'}}$, $v^{B_1} \dots v^{B_{K'}}$) в зависимости от внутренних состояний G^A и G^B (которые соответствуют логическим уровням сигналов $u^{A_1} \dots u^{A_{K''}}$, $u^{B_1} \dots u^{B_{K''}}$). Для реализации функции ψ используются функциональные преобразователи $\Phi \Pi^{A_{\psi}}$, $\Phi \Pi^{B_{\psi}}$.

Логическая структура $\Phi \Pi_{\Psi}$ (см. рис. 5) включает в себя *К*' функциональных преобразователей (по одному на каждый выходной сигнал БЛП-автомата), каждый из которых содержит:

*– D***-**триггер *d*;

– логический преобразователь ЛП, формирующий на выходах *p*[*N*.1] двоичное число, соответствующее ¹/₂ периода выходного сигнала *v*;

– *N*-разрядный счетчик, предназначенный для измерения периода и формирования сигнала *Q* для управления *D*-триггером *d*.

Синхронизация работы функциональных узлов $\Phi \Pi_{\psi}$ обеспечивается с помощью тактового генератора ТГ.

Как видно из логической структуры $\Phi \Pi_{\psi}$, количество внутренних сигналов *u* в общем случае в *b* раз больше количества выходных сигналов *v*, т.е. K'' = bK'.

Логические структуры блоков памяти БП₁, БП₂.

В простейшем случае блок памяти БП представляет собой регистр на основе *D*-триггеров, причем блок памяти $E\Pi_1$ содержит N'', а $E\Pi_2 - L'$ таких триггеров. При этом интервал т дискретного автоматного времени равен периоду сигнала синхронизации *t*, формируемого тактовым генератором. Данный способ реализации памяти БЛП-автомата является наиболее простым, однако не позволяет обеспечить многократную проверку правильности решения логических функций ω (для $E\Pi_1$) и χ (для $E\Pi_2$), что является одним из важнейших показателей влияния кратковременных сбоев БЛП-автомата на безопасность его функционирования. В связи с этим, при реализации логической структуры блока памяти БП с *n*-кратной проверкой интервал т дискретного автоматного времени равен $\tau = nt'$, где t' – интервал времени между проверками.

Следует отметить, что логическая структура блока памяти БП зависит от заданных условий, определяющих безопасность функционирования БЛПавтомата. Выделим два возможных варианта задания условий безопасности:

 более безопасным состоянием, в которое должен перейти БЛП-автомат при наличии сбоев или отказов, является состояние, в котором БЛП-автомат находился в предыдущий момент времени (предыдущее состояние);

2) в качестве защитного состояния, в которое должен перейти автомат при наличии сбоев или отказов, выбрано состояние, при котором все сигналы на выходе БП принимают значения логического нуля.

В первом случае логическая структура блока памяти *БП*₁ (рис. 6) содержит следующие функциональные узлы:

- тактовый генератор ТГ,

– счетчик C1, предназначенный для формирования сигнала E, который представляет собой импульс
с длительностью в один такт сигнала синхронизации
С и формируется периодически с интервалом времени t';

– счетчик C2, обеспечивающий подсчет количе ства выполненных проверок правильности реализа ции логических функций ω;

- N"-разрядные регистры памяти RG1 и RG2,

Выполнение заданного условия обеспечения безопасности функционирования блока памяти $E\Pi_1$, при котором более безопасным является предыдущее состояние, обеспечивается за счет того, что при поступлении сбоев с частотой, меньшей чем $1/\tau$, информация в регистре RG2 не будет обновляться, т.е. блок памяти $E\Pi_1$ будет находиться в том же состоянии, в котором он находился в предыдущий момент времени. Таким образом, формирование нового состояния блока памяти возможно только после успешного выполнения *n*-кратной проверки правильности реализации логической функции ω , что соответствует сформулированному условию безопасности.

Во втором случае, когда в качестве защитного состояния, в которое должен перейти автомат при наличии сбоев или отказов, выбрано состояние, при котором все сигналы на выходе $E\Pi$ принимают значения логического нуля, структура $E\Pi_1$ дополняется счетчиком C3, обеспечивающим обнуление регистра RG2, если на выходе Q счетчика C2 в течение заданного интервала времени не формируется сигнал логической 1 (рис. 7). Таким образом, при поступлении сбоев с частотой, меньшей чем $1/\tau$, выходные сигналы блока памяти $E\Pi_1$ обнуляются.

Рис. 7. Логическая структура блока памяти *БП*₁ с обнулением элементов памяти

Логические структуры блока памяти *БП*₂ для рассмотренных выше вариантов задания условий обеспечения безопасности функционирования БЛП-автомата являются аналогичными со структурами *БП*₁.

Разработка HDL-моделей БЛП-автоматов

Основными задачами разработки HDL-моделей являются: выполнение компьютерного моделирования и анализ функционирования БЛП-автоматов; получение текстового описания стандартных компонентов, на основе которых строятся БЛПавтоматы, а также собственно архитектуры БЛПавтоматов с целью их дальнейшего практического применения при разработке программного обеспечения для ПЛИС-контроллеров с параллельной архитектурой.

Обобщенная структурная схема HDL-модели БЛП-автоматов представлена на рис. 8 и содержит набор компонентов, предназначенных для реализации функций переходов φ , ω , δ , χ , λ , ψ . Названия данных компонентов совпадают с названиями букв греческого алфавита, соответствующих функциям переходов. Кроме того, структурная схема HDLмодели содержит блоки памяти *bp* и компоненты $C1_A$, $C1_B$, которые обеспечивают задание для блоков памяти временного интервала между проверками правильности реализации функций пе-

Рис. 8. Обобщенная структурная схема HDL-модели БЛП-автоматов

реходов. Структурные схемы HDL-моделей функциональных преобразователей ФП_ф, ФП_ψ и блока памяти БП, а также результаты моделирования их работы представлены на рис. 9 – 13.

Выводы

 Архитектура БЛП-автоматов может гибко настраиваться на реализацию ответственных функций в соответствии с заданными условиями, определяющими безопасность функционирования автоматов, путем компоновки и настройки разработанных стандартных компонентов.

 Качественная безопасность на уровне сопряжения ПЛИС-контроллеров с исполнительными механизмами достигается за счет временного кодирования входных и выходных сигналов.

 Повышение достоверности обработки информации достигается за счет многократной проверки правильности реализации логических функций.

4. Основными направлениями дальнейших исследований являются: разработка HDL-моделей многоканальных ПЛИС-контроллеров с реконфигурируемой структурой, методов обмена данными между сетевыми ПЛИС-контроллерами, технологии их программирования и т.д.

Рис. 9. Структурная схема HDL-модели $\Phi \Pi_{\phi}$

Рис. 10. Фрагмент результатов моделирования $\Phi \Pi_{0}$

Рис. 11. Структурная схема HDL-модели $\Phi \Pi_{w}$

Рис. 12. Фрагмент результатов моделирования ФП_и

Литература

 ДСТУ 4151-2003 Комплекси технічних засобів систем керування та регулювання руху поїздів.
Електромагнітна сумісність.

 ДСТУ 4178-2003 Комплекси технічних засобів систем керування та регулювання руху поїздів.
Функційна безпечність і надійність. Горелик А.В. Проблемы безопасности программного обеспечения микропроцессорных систем // Автоматика, связь, информатика. – 2003. – № 8. – С. 24-26.

4. Дрейман О.К., Гавзов Д.В., Илюхин М.В. Сопряжение микропроцессорных систем железнодорожной автоматики с напольными объектами // Автоматика, телемеханика и связь. – 1990. – № 1, 2. – С. 14-17.

 Лисенков В.М. Статистическая теория безопасности движения поездов. – М.: ВИНИТИ РАН, 1999. – 322 с.

 Методы построения безопасных микроэлектронных систем железнодорожной автоматики / В.В. Сапожников, Вл.В. Сапожников, Х.А. Христов, Д.В. Гавзов. – М.: Транспорт, 1995. – 272 с.

 Мойсеєнко В.І. Мікропроцесорні системи залізничної автоматики. Част. 1. Централізація стрілок та сигналів. – Транспорт України, 1999 – 148 с.

 Сапожников В.В., Кравцов Ю.А., Сапожников Вл.В. Теория дискретных устройств железнодорожной автоматики, телемеханики и связи: Учеб. для вузов ж.-д. трансп. – М.: УМК МПС России, 2001. – 312 с.

 Сапожников В.В., Сапожников Вл.В. Дискретные автоматы с обнаружением отказов. – Л.: Энергоатомиздат. Ленингр. отд-ние, 1984. – 112 с.

 Програмований логічний контролер: Пат.
56476 Україна, G05B19/18/ Загарій Г.І., Фурман І.О., Малиновський М.Л.; Заявл. 11.06.2002; Опубл.
15.09.2004. Бюл. № 9. – 3 с.

11. Furman I., Malinovsky M. Construction Principles and Architecture of a Safe, High-Performance Logic Controlling Module // Proceedings of the 2002 MAPLD International Conference – Maryland, USA.

Поступила в редакцию 12.02.2007

Рецензент: д-р техн. наук, проф. В.С. Харченко, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», Харьков.