УДК 621.396.96

В.И. АНТЮФЕЕВ, В.Н. БЫКОВ

Объединенный научно-исследовательский институт Вооруженных Сил, Украина

ПОТЕНЦИАЛЬНАЯ ТОЧНОСТЬ МЕСТООПРЕДЕЛЕНИЯ РАДИОМЕТРИЧЕСКИМИ МАТРИЧНЫМИ СИСТЕМАМИ НАВИГАЦИИ С УПЛОТНЕНИЕМ КАНАЛЬНЫХ СИГНАЛОВ

Приводятся результаты оценки потенциальной точности определения координат радиометрическими матричными системами навигации с уплотнением канальных сигналов на основе использования системы функций Уолша, полученные с учетом корреляции канальных сигналов, обусловленной частичным пересечением диаграмм направленности парциальных лучей матричной антенны и пропусканием сигналов через общий усилительный тракт.

радиометрические матричные системы, уплотнение канальных сигналов, потенциальная точность местоопределения

Введение

Радиометрические матричные системы находят применение для навигации летательных аппаратов по наземным ориентирам. Для уменьшения числа приемных каналов возможно применение уплотнения канальных сигналов, в частности, с помощью семейства функций Уолша [1 – 5]. В таких системах взаимная корреляция канальных сигналов возникает как за счет частичного перекрытия парциальных диаграмм направленности антенны (ДНА) соседних лучей, так и за счет пропускания их через общий усилительный тракт при уплотнении.

В работе [3] получено выражение для корреляционной матрицы канальных сигналов на выходе приемника с уплотнением сигналов, но вопрос о потенциальной точности определения координат такими системами остается открытым.

Целью статьи является определение потенциальной точности местоопределения радиометрическими матричными системами навигации с учетом влияния обоих факторов.

Постановка задачи. В работе [6], результаты и обозначения которой будем использовать в дальнейшем, получено выражение для выходного отношения сигнал/шум многоканального радиометрического приемника

$$\mathbf{q} = \tilde{\mathbf{q}} + \Delta \mathbf{q} \,, \tag{1}$$

которое можно рассматривать как модель изображения в векторном представлении, нумерация элементов которого получена путем его развертки по строкам; $q_k = (q_1, ..., q_N)$, $N = N_1 N_2$; $\tilde{\mathbf{q}}$, $\Delta \mathbf{q}$ – сигнальная и шумовая составляющие изображения соответственно; N_1 , N_2 – число строк и столбцов матрицы изображения соответственно;

$$\tilde{q}_{k} = \sum_{i=1}^{N} q_{ik} - \frac{1}{2} \sum_{(i,j) \in I_{k}} q_{ij} ; \qquad (2)$$
$$= \left\{ (i,j) \in \overline{1,N} \times \overline{1,N} \middle| i \otimes j = k \right\};$$

двоичное разложение числа $i \oplus j$ получается путем поразрядного сложения по модулю 2 двоичных разложений чисел i, j;

 I_k

$$q_{ij} = \frac{1}{T_n} \int_{\mathbf{R}^2} \sqrt{G_i(x, y) G_j(x, y)} T(x, y) dx dy; \qquad (3)$$

T(x, y) – распределение радиояркостной температуры на поверхности земли в связанной с нею системе координат; T_n – приведенная ко входу эквивалентная температура усилительного тракта радиометра; $G_i(x, y) = G(x, y; x_{0i}, y_{0i})$ – ДНА по мощности *i*-го парциального луча многоканальной антенны, пересчитанная к координатам на поверхности земли; (x_{0i}, y_{0i}) – точка пересечения оси ДНА *i*-го луча с поверхностью земли.

В той же работе получено следующее соотношение для матрицы шумовых компонент $\hat{\Delta q_k}$:

$$R_{\Delta q_k \Delta q_l} = \frac{4}{\Delta f \tau} R'_{kl}, \ k, l \in \overline{1, N} ,$$

где

$$\begin{aligned} R'_{kl} &= q'^{2} + q''^{2} + \delta_{kl} \left(1 + \frac{\overline{q}}{2} \right)^{2} + \frac{\tilde{q}_{k} + \tilde{q}_{l}}{2} + \frac{(N+1)\tilde{q}_{k}\tilde{q}_{l}}{4}; \quad (4) \\ q'^{2} &= \frac{1}{4} \Biggl[\sum_{(i,j,p,q) \in I_{2,kl}} q_{ij} q_{pq} + \frac{1}{4} \sum_{(i,j,p,q) \in I_{4,kl}} q_{ij} q_{pq} - (1 - \delta_{kl}) \Biggl[\overline{q} \sum_{(i,j) \in I_{1,kl}} q_{ij} + \sum_{(i,j,p,q) \in I_{3,kl}} q_{ij} q_{pq} \Biggr] \Biggr]; \\ q''^{2} &= \sum_{(i,j) \in I_{2,kl}} q_{ij} - \frac{1}{2} (1 - \delta_{kl}) \overline{q} \sum_{(i,j) \in I_{1,kl}} q_{ij}; \\ \overline{q} = \sum_{i,j=1}^{N} q_{ij}; \quad I_{1,kl} = \left\{ (i,j) \in \overline{1,N} \times \overline{1,N} | i = k \oplus l \right\}; \\ I_{2,kl} &= \left\{ (i,j,p,q) \in \overline{1,N} \times \overline{1,N} \times \overline{1,N} \times \overline{1,N} | i \oplus p = k \oplus l \right\}; \\ I_{4,kl} &= \left\{ (i,j,p,q) \in \left[\overline{1,N}\right]^{4} | i \oplus j \oplus p \oplus q = k \oplus l \right\}; \end{aligned}$$

Δf – полоса пропускания приемника по радиочастоте; τ – время интегрирования радиометра.

Совместную плотность распределения случайных величин Δq_k можно считать нормальной в силу известной теоремы нормализации случайного процесса на выходе узкополосного фильтра радиометрического канала [7].

Для упрощения расчетов предположим, что объект, координаты которого оцениваются, представляет собой набор прямоугольников

$$\left\{S_m = \left[\varepsilon_x + \Delta_{x_m}, \varepsilon_x + \Delta_{x_m} + l_{x_m}\right] \times \left[\varepsilon_y + \Delta_{y_m}, \varepsilon_y + \Delta_{y_m} + l_{y_m}\right]_{m=1}^M,\right\}_{m=1}^M$$

наблюдаемых на однородном фоне, т.е.

$$T(x,y) = \begin{cases} T_m, (x,y) \in S_m, m \in \overline{1,M}; \\ T_b, (x,y) \notin \bigcup_{m=1}^M S_m. \end{cases}$$
(5)

В формуле (3) $(\Delta_{x_m}, \Delta_{y_m})$ – вектор сдвига левого нижнего угла *m*-го прямоугольника относительно соответствующих координат первого прямоугольника, для которого $(\Delta_{x_1}, \Delta_{y_1}) = \mathbf{0}$.

Построим логарифм функции правдоподобия векторного параметра сдвига $\boldsymbol{\varepsilon} = (\varepsilon_x, \varepsilon_x)$ для изображения (1):

$$\Lambda(\boldsymbol{\varepsilon}) = -\frac{1}{2} \left(\mathbf{q} - \tilde{\mathbf{q}}(\boldsymbol{\varepsilon}) \right)^T \mathbf{R}^{-1} \left(\mathbf{q} - \tilde{\mathbf{q}}(\boldsymbol{\varepsilon}) \right).$$
(6)

Для модели распределения (5) выражение (3) можно представить в виде

$$q_{ij}(\varepsilon_x, \varepsilon_y) = s_{ij}(\varepsilon_x, \varepsilon_y) + p_{ij}, \qquad (7)$$

где

$$\begin{split} s_{ij} &= \frac{1}{T_n} \sum_{m=1}^M \Delta T_m \int_{\varepsilon_x + \Delta_{m_x}}^{\varepsilon_x + \Delta_{m_x} + l_x \varepsilon_y + \Delta_{m_y} + l_y} \int_{\varepsilon_y + \Delta_{m_y}}^{G_{ij}(x, y) dxdy}, \\ p_{ij} &= \frac{T_b}{T_n} \int_{R^2} G_{ij}(x, y) dxdy = \frac{T_b}{T_n}, \\ \Delta T_m &= T_m - T_b, \ G_{ij}(x, y) = \sqrt{G_i(x, y)G_j(x, y)} . \end{split}$$

Тогда

$$\tilde{q}_k(\mathbf{\epsilon}) = f_k(\mathbf{\epsilon}) + g_k , \qquad (8)$$

где
$$f_k(\mathbf{\epsilon}) = \sum_{i=1}^N s_{ik}(\mathbf{\epsilon}) - \frac{1}{2} \sum_{(i,j) \in I_k} s_{ik}(\mathbf{\epsilon}),$$

$$g_k = \sum_{i=1}^N p_{ik} - \frac{1}{2} \sum_{(i,j) \in I_k} p_{ik}.$$

Тогда модель изображения (1) и логарифм функции правдоподобия (6) принимают вид

$$\mathbf{q} = \mathbf{f} + \mathbf{g} + \Delta \mathbf{q} \,, \tag{9}$$

$$\Lambda(\boldsymbol{\varepsilon}) = -\frac{1}{2} (\boldsymbol{q} - \boldsymbol{g} - \boldsymbol{f}(\boldsymbol{\varepsilon}))^T \mathbf{R}^{-1} (\boldsymbol{q} - \boldsymbol{g} - \boldsymbol{f}(\boldsymbol{\varepsilon})). \quad (10)$$

Требуется при принятых допущениях и предположениях путем использования неравенства Рао-Крамера оценить потенциальную точность определения параметра сдвига $\boldsymbol{\varepsilon} = (\varepsilon_x, \varepsilon_x)$.

Потенциальная точность местоопределения

Построим информационную матрицу Фишера параметра **ε**:

$$\mathbf{F}(\boldsymbol{\varepsilon}) = \begin{bmatrix} \mathbf{f}_x^T(\boldsymbol{\varepsilon}) \mathbf{R}^{-1} \mathbf{f}_x(\boldsymbol{\varepsilon}) & \mathbf{f}_x^T(\boldsymbol{\varepsilon}) \mathbf{R}^{-1} \mathbf{f}_y(\boldsymbol{\varepsilon}) \\ \mathbf{f}_x^T(\boldsymbol{\varepsilon}) \mathbf{R}^{-1} \mathbf{f}_y(\boldsymbol{\varepsilon}) & \mathbf{f}_y^T(\boldsymbol{\varepsilon}) \mathbf{R}^{-1} \mathbf{f}_y(\boldsymbol{\varepsilon}) \end{bmatrix}, \quad (11)$$

где $f_{xi}(\varepsilon_x, \varepsilon_y) = \frac{\partial f_i(\varepsilon_x, \varepsilon_y)}{\partial \varepsilon_x}, \ i \in \overline{1, N},$ $f_{yi}(\varepsilon_x, \varepsilon_y) = \frac{\partial f_i(\varepsilon_x, \varepsilon_y)}{\partial \varepsilon_y}, \ i \in \overline{1, N},$

причем зависимостью матрицы **R** от параметра **є** пренебрегаем.

Диагональные элементы обратной к (11) матрицы дают дисперсии оценок параметра сдвига **в**. Для среднеквадратического отклонения оценок будем иметь:

$$\sigma_{x} = \left[\frac{\mathbf{f}_{y}^{T}\mathbf{R}^{-1}\mathbf{f}_{y}}{\left(\mathbf{f}_{x}^{T}\mathbf{R}^{-1}\mathbf{f}_{x}\right)\left(\mathbf{f}_{y}^{T}\mathbf{R}^{-1}\mathbf{f}_{y}\right) - \left(\mathbf{f}_{x}^{T}\mathbf{R}^{-1}\mathbf{f}_{y}\right)^{2}}\right]^{1/2}; \quad (12)$$
$$\sigma_{y} = \left[\frac{\mathbf{f}_{x}^{T}\mathbf{R}^{-1}\mathbf{f}_{x}}{\left(\mathbf{f}_{x}^{T}\mathbf{R}^{-1}\mathbf{f}_{x}\right)\left(\mathbf{f}_{y}^{T}\mathbf{R}^{-1}\mathbf{f}_{y}\right) - \left(\mathbf{f}_{x}^{T}\mathbf{R}^{-1}\mathbf{f}_{y}\right)^{2}}\right]^{1/2}.$$

Используя правило дифференцирования интеграла, зависящего от параметра, найдем

$$\begin{split} \frac{\partial s_{ik}}{\partial \varepsilon_x} &= \frac{1}{T_n} \sum_{m=1}^M T_m \int_{\varepsilon_y + \Delta_{y_m}}^{\varepsilon_y + \Delta_{y_m} + l_{y_m}} \left[G_{ij} \left(\varepsilon_x + \Delta_{x_m} + l_{x_m}, y \right) - \right. \\ &\left. - G_{ij} \left(\varepsilon_x + \Delta_{x_m}, y \right) \right] dy, \\ \frac{\partial s_{ik}}{\partial \varepsilon_y} &= \frac{1}{T_n} \sum_{m=1}^M T_m \int_{\varepsilon_x + \Delta_{x_m}}^{\varepsilon_x + \Delta_{x_m} + l_{y_m}} \left[G_{ij} \left(x, \varepsilon_y + \Delta_{y_m} + l_{y_m} \right) - \right. \\ &\left. - G_{ij} \left(x, \varepsilon_y + \Delta_{y_m} \right) \right] dx. \end{split}$$

Результаты расчета потенциальной точности местоопределения

Для простоты рассмотрим случай аппроксимации парциальной ДНА гауссоидой

$$G_{i}(x,y) = \frac{1}{2\pi\sigma_{x}\sigma_{y}} \exp\left\{-\left[\frac{(x-x_{i})^{2}}{2\sigma_{x}^{2}} + \frac{(y-y_{i})^{2}}{2\sigma_{y}^{2}}\right]\right\}, (13)$$

поскольку в этом случае удается выполнить интегрирование по прямоугольникам. Для такой аппроксимации

$$\begin{split} G_{ij}(x,y) &= \frac{C_{ij}}{2\pi\sigma_x\sigma_y} \times \\ &\times \exp\left\{-\frac{1}{2}\left\{\left[\frac{1}{\sigma_x^2}\left(x - \frac{x_i + x_j}{2}\right)^2\right] + \frac{1}{\sigma_y^2}\left(y - \frac{y_i + y_j}{2}\right)^2\right\}\right\},\\ s_{ij}(\mathbf{\epsilon}) &= \frac{C_{ij}}{T_n}\sum_{m=1}^M \Delta T_m \Phi\left[\frac{1}{\sigma_x}\left(x - \frac{x_i + x_j}{2}\right)\right]_{x=\epsilon_x + \Delta_{x_m}}^{\epsilon_m + \Delta_{x_m} + l_{x_m}} \times \\ &\times \Phi\left[\frac{1}{\sigma_y}\left(y - \frac{y_i + y_j}{2}\right)\right]_{x=\epsilon_y + \Delta_{y_m}}^{\epsilon_y + \Delta_{y_m} + l_{y_m}}, \ p_{ij} = \frac{T_b}{T_n}, \\ \text{где } C_{ij} &= \exp\left\{-\frac{1}{8}\left[\left(\frac{x_i - x_j}{\sigma_x}\right)^2 + \left(\frac{y_i - y_j}{\sigma_y}\right)^2\right]\right\}. \end{split}$$

Групповая ДНА строилась следующим образом. Задавалась ширина ДНА по уровню – 3 дБ в угломестной Δθ и азимутальной Δφ плоскостях. При аппроксимации гауссоидой

$$G_{i}(\theta,\phi) = \frac{1}{2\pi\sigma_{\theta}\sigma_{\phi}} \exp\left\{-\left[\frac{(\theta-\theta_{i})^{2}}{2\sigma_{\theta}^{2}} + \frac{(\phi-\phi_{i})^{2}}{2\sigma_{\phi}^{2}}\right]\right\}$$

параметры гауссоиды должны выбираться в соответствии с соотношениями

$$\sigma_{\theta} = \frac{\Delta \theta}{2\sqrt{2 \ln 2}}, \ \sigma_{\phi} = \frac{\Delta \phi}{2\sqrt{2 \ln 2}},$$

а параметры аппроксимации (13) определялись выражениями $\sigma_x = z_0 \operatorname{tg} \sigma_{\theta}/2; \ \sigma_y = z_0 \operatorname{tg} \sigma_{\phi}/2, \$ где z_0 – высота расположения системы навигации.

В антенной системе координат (x_A, y_A, z_A) , в которой ось групповой ДНА предполагается совпа-

дающей с осью z_A , оси строчных парциальных ДНА лежат в плоскостях, проходящих через ось y_A под углами

$$\theta_i = -\delta\theta \left[\frac{N_1 - 1}{2} - (i - 1) \right], \ i \in \overline{1, N_1}$$
(14)

к плоскости $z_A = 0$, а оси столбцовых ДНА лежат в плоскостях, проходящих через ось z_A под углами

$$\varphi_j = \delta \varphi \left[\frac{N_2 - 1}{2} - (j - 1) \right], \ j \in \overline{1, N_2}$$
(15)

к плоскости $y_A = 0$.

В формулах (14), (15) бθ, бφ – угловой шаг между соседними плоскостями, знак «минус» в (14) выбран для того, чтобы нумерация лучей соответствовала принятой в матрицах. Уравнения указанных плоскостей имеют вид

$$D_i: x_A \sin \theta_i - z_A \cos \theta_i = 0;$$

$$L_j: x_A \sin \phi_j - y_A \cos \phi_j = 0.$$
(16)

Направление *ij* -го луча в антенной СК совпадает с направляющим вектором \mathbf{b}^{ij} линии пересечения плоскостей D_i и L_j , который определяется выражением [8]:

$$\mathbf{b}^{ij} = \left[\cos\theta_i \cos\varphi_j, \cos\theta_i \sin\varphi_j, \sin\theta_i \cos\varphi_j\right]^T.$$

Координаты точек пересечения осей парциальных ДНА с поверхностью земли (x_{0ij}, y_{0ij}) , фигурирующие в (13), могут быть рассчитаны по формулам, приведенным в [7]. В частности, если в момент визирования антенна расположена в точке (x_0, y_0, z_0) и ее ось групповой ДНА противоположна направлению оси z, то

$$x_{0ij} = x_0 - z_0 b_x^{ij} / b_z^{ij} ; \ y_{0ij} = y_0 - z_0 b_y^{ij} / b_z^{ij} .$$

Угловые расстояния бө, бф между соседними лучами определялись из соотношений

$$\delta \theta = \vartheta \theta / N_1; \ \delta \phi = \vartheta \phi / N_2$$

где угловые расстояния 90, 9 между осями крайних лучей считались заданными. На рис. 1 представлены результаты расчетов потенциальной точности местоопределения для следующих исходных данных:

$$m = 1; N_1 = N_2 = 4; \varepsilon_x = \varepsilon_y = -35 \text{ m};$$

$$\Delta_{x_1} = \Delta_{y_1} = 0; l_x = 70 \text{ m}; T_n = 1000 \text{ K};$$

$$T_b = 270 \text{ K}; T_1 = 267 \text{ K}; \Delta T_1 = 3 \text{ K};$$

$$\Delta f = 10^9 \text{ Fu}; \tau = 0,1 \text{ c}; \Delta \theta = \Delta \varphi = 2^\circ.$$

Рис. 1. Зависимости точности местоопределения от длины прямоугольника при $\Delta T_1 = 3 K$.

a - d = 0,5; 6 - d = 0,75;
B - d = 1;
$$\Gamma$$
 - d = 1,25

В случае m = 1 формулы (12) можно переписать для относительной (относительно ширины ДНА на местности) точности местоопределения в виде

$$\delta_{x} = \frac{1}{\Delta x Q} \left[\frac{\mathbf{f}_{y}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{y}^{\prime}}{\left(\mathbf{f}_{x}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{x}^{\prime}\right) \left(\mathbf{f}_{y}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{y}^{\prime}\right) - \left(\mathbf{f}_{x}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{y}^{\prime}\right)^{2}} \right]^{1/2};$$
(17)
$$\delta_{y} = \frac{1}{\Delta y Q} \left[\frac{\mathbf{f}_{x}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{x}^{\prime}}{\left(\mathbf{f}_{x}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{x}^{\prime}\right) \left(\mathbf{f}_{y}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{y}^{\prime}\right) - \left(\mathbf{f}_{x}^{\prime T} \mathbf{R}^{\prime - 1} \mathbf{f}_{y}^{\prime}\right)^{2}} \right]^{1/2},$$

где
$$f' = f T_n / \Delta T_1; \quad Q = \frac{\Delta T_1}{\sigma_0}$$
 – отношение сиг-

нал/шум на выходе радиометра;

 $\sigma_0 = 2T_n / \sqrt{\Delta f \tau}$ – чувствительность радиометра при нулевом сигнале на входе;

$$\Delta x = 2 \operatorname{tg} \Delta \theta / 2, \quad \Delta y = 2 \operatorname{tg} \Delta \varphi / 2, \quad \delta l_y = l_y / \Delta y.$$

Назовем коэффициентом перекрытия лучей отношение $d_x = \delta x / \Delta x$; $d_y = \delta y / \Delta y$.

Тогда рис. 1, а соответствует случаю, когда $\Delta \theta = \Delta \varphi = 4^{\circ}$ (ДНА соседних лучей перекрываются наполовину ($d_x = d_y = d = 0, 5$)); рис. 1, б – случаю $\Delta \theta = \Delta \varphi = 6^{\circ}$ (d = 0, 75); рис. 1, в – случаю $\Delta \theta = \Delta \varphi = 8^{\circ}$ (ДНА соседних лучей соприкасаются d = 1); рис. 1, г – случаю $\Delta \theta = \Delta \varphi = 10^{\circ}$ (d = 1, 25).

Тонкими кривыми на рис. 1 отображены результаты расчетов по формуле (17) с корреляционной матрицей (4), а жирными – результаты расчетов по той же формуле, но с корреляционной матрицей

$$R_{\Delta q_k \Delta q l} = \frac{4}{\Delta f \tau} (q_{kl} + 1)^2 ,$$

соответствующей матричному радиометру с независимыми каналами, каждый из которых выполнен по модуляционной схеме.

На рис. 2 приведены такие же, как и на рис. 1 графики для случая $\Delta T_1 = 8 K$. Заметно, что при сильном пересечении соседних ДНА (рис. 1, а, рис. 2, а) проигрыш в точности местоопределения по сравнению с идеальным случаем многоканально-го приемника с независимыми каналами при увеличении контраста с 3 К до 8 К возрастает от 2,255 раза до 7,622 раз.

Используя результаты работы [9], можно использовать другие аппроксимации ДНА парциальных лучей антенны.

Для того чтобы выяснить влияние недиагональных членов матрицы $\left[q_{ij} \right]$ на точность местоопре-

Рис. 2. Зависимости точности местоопределения от длины прямоугольника при $\Delta T_1 = 8 K$: a - d = 0,5; 6 - d = 0,75; B - d = 1; r - d = 1,25

деления, на рис.3 для случая d = 0,5 приведены результаты расчетов с учетом корреляции канальных сигналов (тонкие кривые) и диагональной матрицы $q_{ij} = q_i \delta_{ij}$; $i, j \in \overline{1, N}$ (жирные кривые).

Для $d \ge 0,75$ кривые для обоих случав практически сливаются.

Выводы

Показано, что уже при коэффициенте перекрытия парциальных ДНА соседних лучей d > 0,75влиянием взаимной корреляции канальных сигналов, обусловленных пересечением парциальных ДНА соседних каналов, можно пренебречь.

Литература

1. АС 1544028 СССР, МКИ G 01 R 29/08. Многоканальный радиометр / В.И. Антюфеев, В.Н. Быков, В.А. Кулаков, А.С. Султанов, Ю.В. Овсянников; Заявлено 23.12.88; Опубл. 15.10.89. – 2 с.

2. Антюфеев В.И., Быков В.Н., Мирошник Т.В., Радзиховский В.Н., Сотников А.М. Уплотнение каналов в многоканальных радиометрических приемниках миллиметрового диапазона волн // Радиотехника. – 2004. – Вып. 136. – С. 86-90.

 Антюфеев В.И. Оптимизация семейства модулирующих функций в многоканальном радиометре.
 Сообщение 1 // Радиотехника. – 1997. – Вып. 101. – С. 16-20.

 Антюфеев В.И. Оптимизация семейства модулирующих функций в многоканальном радиометре.
 Сообщение 2 // Радиотехника. – 1997. – Вып. 101. – С. 21-28. 5. Антюфеев В.И., Быков В.Н., Овсянников Ю.В., Султанов А.С. Оценка реальной чувствительности многоканального радиометра // Радиотехника. – 1991. – Вып. 94. – С. 7-13.

6. Антюфеев В.И., Быков В.Н. Шумовые свойства радиометрических матричных систем формирования изображений с уплотнением канальных сигналов // Радіоелектронні і комп'ютерні системи. – 2007. – №2 (21). – С. 11-15.

 Тихонов В.И. Статистическая радиотехника. – М.: Радио и связь, 1982. – 624 с.

 Антюфеев В.И., Быков В.Н., Гричанюк А.М., Черепнев А.С. Модель формирования изображений в радиометрических матричных корреляционноэкстремальных системах навигации // Системи обробки інформації. – Х.: НАНУ, ПАНМ, ХВУ. – 2002. – Вип. 6 (22). – С. 307-313.

9. Антюфеев В.И., Быков В.Н., Макаренко Б.И. Потенциальная точность местоопределения матричными системами землеобзора // Электромагнитные волны и электронные системы. – 2001. – Т.6, № 2-3. – С. 101-106.

Поступила в редакцию 5.09.2007

Рецензент: д-р техн. наук, проф. Е.Л. Казаков, Объединенный научно-исследовательский институт Вооруженных Сил, Харьков.