УДК 533.6.08

В.В. Тюрев, В.А. Тараненко, Ю.С. Мащенко

Решение задач гидромеханики методом конечных элементов

Национальный аэрокосмический университет им. Н. Е. Жуковского «ХАИ»

Описано применение метода конечных элементов к решению широко распространенной в гидромеханике задачи безвихревого обтекания тела идеальной жидкостью. Двумерная модель течения в рассматриваемой задаче сформирована с использованием квадратичных треугольных элементов. Решение выполнено путем минимизации функционала на множестве узловых значений функции тока с использованием L-координат. Приведены некоторые особенности конечно-элементных схем, полезных для решения задач гидромеханики.

Ключевые слова: квадратичный треугольный элемент, квадратичный полином, функционал, безвихревое течение, функции формы, матрица Якоби.

Метод конечных элементов получил широкое распространение при решении инженерных и физических задач. В настоящее время в вычислительной гидромеханике [1 – 5] этот метод наиболее интенсивно развивается и постоянно расширяется область его применения.

Данный метод фактически представляет собой обобщение метода Рэлея-Ритца. Поэтому он применим к широкому классу уравнений в частных производных. Решение таких уравнений связано с минимизацией некоторого функционала.

В настоящей работе рассмотрено применение метода конечных элементов в задачах гидромеханики на примере безвихревого обтекания цилиндра. Данная задача может быть сформулирована с использованием функции тока ψ . Уравнение для функции тока в данной задаче имеет вид

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 0.$$
 (1)

Скорость течения выражается через функцию тока $\psi(x, y)$ следующими формулами:

$$V_x = \frac{\partial \psi}{\partial y}, V_y = -\frac{\partial \psi}{\partial x}.$$

Для однозначного решения дифференциального уравнения (1) необходимо задать граничные условия. Будем считать, что нижняя граница совпадает с

линией симметрии, а на верхней границе и на поверхности цилиндра выполняется условие непротекания. Тогда эти границы являются линиями тока. Значения функции тока на указанных границах приняты, как показано на рис. 1. На левой и правой границах принят линейный закон изменения функции тока.

Для построения модели двумерной дискретной области используем треугольники. Внутри каждого треугольника для искомой функции тока ψ применяем интерполяцию квадратичным полиномом

Рис. 1. Постановка граничных условий в расчетной области

$$\psi = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x^2 + \alpha_5 x y + \alpha_6 y^2.$$
 (2)

В этом случае каждый треугольный элемент содержит шесть узлов (рис. 2).

В вариационном исчислении устанавливаем, что для минимизации функционала

Рис. 2. L - координаты для квадратичного треугольного элемента

$$\chi = \int_{V} \frac{1}{2} \left[\left(\frac{\partial \psi}{\partial x} \right)^2 + \left(\frac{\partial \psi}{\partial y} \right)^2 \right] dV$$
(3)

необходимо, чтобы удовлетворялось дифференциальное уравнение (1) с граничными условиями, приведенными выше.

Минимизация функционала (3) осуществляется на множестве узловых значений $\{\Psi\}$. Для упрощения процесса минимизации функционала введем матрицу

$$\left\{g\right\}^{T} = \left[\frac{\partial\psi}{\partial x} \quad \frac{\partial\psi}{\partial y}\right].$$
 (4)

Соотношение (3) может быть теперь записано в виде

$$\chi = \int_{V} \frac{1}{2} \left(\left\{ g \right\}^{T} \left\{ g \right\} \right) dV \,. \tag{5}$$

Учитывая, что функции от ψ не являются непрерывными во всей области, вместо них введем рассмотрение функции $\psi^{(e)}$, определенные на отдельных элементах. Интеграл в (5) разбиваем на интегралы по каждому элементу, что дает

$$\chi = \sum_{e=1}^{E} \int_{V^{(e)}} \frac{1}{2} \left\{ g^{(e)} \right\}^{T} \left\{ g^{(e)} \right\}^{T} \left\{ g^{(e)} \right\} dV, \qquad (6)$$

где Е – общее число элементов. Выражение (6) можно записать как

$$\chi = \chi^{(1)} + \chi^{(2)} + \ldots + \chi^{(E)} = \sum_{e=1}^{E} \chi^{(e)},$$
(7)

где $\chi^{(e)}$ – вклад от одного элемента в χ . Минимизация χ требует выполнения соотношения

$$\frac{\partial \chi}{\partial \{\Psi\}} = \frac{\partial}{\partial \{\Psi\}} \sum_{e=1}^{E} \chi^{(e)} = \sum_{e=1}^{E} \frac{\partial \chi^{(e)}}{\partial \{\Psi\}} = 0.$$
(8)

Частные производные $\partial \chi^{(e)} / \partial \{\Psi\}$ в выражении (8) не могут быть определены, пока интеграл (6) не будет выражен через узловые значения $\{\Psi\}$. Значения функции тока ψ внутри элемента можно выразить через узловые значения функции тока $\{\Psi\}$ следующим образом:

$$\boldsymbol{\psi}^{(e)} = \left[N^{(e)} \right] \left\{ \boldsymbol{\Psi} \right\}, \tag{9}$$

где N^(е) – функция формы или интерполяционная функция.

С учетом того, что дискретная область представлена в виде треугольников, для определения функций формы наиболее эффективно использование естественной системы координат. Эта система координат определяется тремя относительными координатами L_1 , L_2 и L_3 , изображенными на рис. 2. Функции формы для квадратичного треугольного элемента выражаются через L-координаты следующим образом:

$$N_{1} = L_{1} \cdot (2 \cdot L_{1} - 1), N_{2} = 4 \cdot L_{1} \cdot L_{2}, N_{3} = L_{2} \cdot (2 \cdot L_{2} - 1),$$

$$N_{4} = 4 \cdot L_{2} \cdot L_{2}, N_{5} = L_{2} \cdot (2 \cdot L_{2} - 1), N_{5} = 4 \cdot L_{1} \cdot L_{2}$$
(10)

$$N_4 = 4 \cdot L_2 \cdot L_3, N_5 = L_3 \cdot (2 \cdot L_3 - 1), N_6 = 4 \cdot L_1 \cdot L_3.$$

Учитывая соотношение (9), можно вычислить величину (4), которая вместе с

(9) может быть подставлена в (6). Выражение для $\{g^{(e)}\}$ имеет вид

$$\left\{ g^{(e)} \right\} = \begin{cases} \frac{\partial \psi^{(e)}}{\partial x} \\ \frac{\partial \psi^{(e)}}{\partial y} \end{cases} = \begin{bmatrix} \frac{\partial N_1^{(e)}}{\partial x} & \frac{\partial N_2^{(e)}}{\partial x} & \cdots & \frac{\partial N_6^{(e)}}{\partial x} \\ \frac{\partial N_1^{(e)}}{\partial y} & \frac{\partial N_2^{(e)}}{\partial y} & \cdots & \frac{\partial N_6^{(e)}}{\partial y} \end{bmatrix} \begin{cases} \Psi_1 \\ \Psi_2 \end{cases}$$
 или
$$\left\{ g^{(e)} \right\} = \left[B^{(e)} \right] \{\Psi\},$$
 (11)

где [B] содержит информацию, связанную с производными от функции формы.

Для вычисления производных $\partial N_{\beta}/\partial x$ и $\partial N_{\beta}/\partial y$ можно воспользоваться их связью с L-координатами:

$$\left\{\begin{array}{c} \frac{\partial N_{\beta}}{\partial x} \\ \frac{\partial N_{\beta}}{\partial y} \end{array}\right\} = \left[J\right]^{-1} \left\{\begin{array}{c} \frac{\partial N_{\beta}}{\partial L_{1}} \\ \frac{\partial N_{\beta}}{\partial L_{2}} \end{array}\right\},$$
(12)

где [J] – матрица Якоби.

Она имеет следующий вид:

$$\begin{bmatrix} J \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial L_1} & \frac{\partial y}{\partial L_1} \\ \frac{\partial x}{\partial L_2} & \frac{\partial y}{\partial L_2} \end{bmatrix}.$$
 (13)

Так как L-координаты не являются независимыми, следовательно, при определении производные $\partial N_{\beta}/\partial L_1$ и $\partial N_{\beta}/\partial L_2$ необходимо учитывать координату L_3 следующим образом:

$$\frac{\partial N_{\beta}}{\partial L_{1}} = \frac{\partial N_{\beta}}{\partial L_{1}} - \frac{\partial N_{\beta}}{\partial L_{3}}, \quad \frac{\partial N_{\beta}}{\partial L_{2}} = \frac{\partial N_{\beta}}{\partial L_{2}} - \frac{\partial N_{\beta}}{\partial L_{3}}.$$
(14)

Координаты любой точки, расположенной внутри треугольного элемента, можно выразить через координаты вершин треугольника следующим образом: $x = I_4 \cdot X_1 + I_2 \cdot X_2 + I_2 \cdot X_2$

$$x = L_1 \cdot X_1 + L_2 \cdot X_3 + L_3 \cdot X_5,$$

$$y = L_1 \cdot Y_1 + L_2 \cdot Y_3 + L_3 \cdot Y_5,$$
(15)

где X, Y – соответствующие координаты вершин треугольника 1, 3 и 5.

По аналогии с формулами (14) можно определить матрицу Якоби, учитывая выражения (15):

$$\frac{\partial x}{\partial L_1} = \frac{\partial x}{\partial L_1} - \frac{\partial x}{\partial L_3} = X_1 - X_5, \quad \frac{\partial x}{\partial L_2} = \frac{\partial x}{\partial L_2} - \frac{\partial x}{\partial L_3} = X_3 - X_5,$$

$$\frac{\partial y}{\partial L_1} = \frac{\partial y}{\partial L_1} - \frac{\partial y}{\partial L_3} = Y_1 - Y_5, \quad \frac{\partial y}{\partial L_2} = \frac{\partial y}{\partial L_2} - \frac{\partial y}{\partial L_3} = Y_3 - Y_5.$$
(16)

Таким образом, учитывая выражения (14) и (16), по формуле (12) можно найти производные $\partial N_{\beta}/\partial x$ и $\partial N_{\beta}/\partial y$ (табл. 1). В табл.1 приняты следующие обозначения:

$$a = X_1 - X_5, \ b = Y_1 - Y_5, \ c = X_3 - X_5, \ d = Y_3 - Y_5, \ rJ = 1/(a \cdot d - b \cdot c).$$

Таблица 1

Тип	Значение производной в L-координатах
$\frac{\partial N_1}{\partial x}$	$rJ \cdot (-d + 4 \cdot d \cdot L_1)$
$\partial N_1 / \partial y$	$rJ \cdot (c - 4 \cdot c \cdot L_1)$
$\partial N_2/\partial x$	$rJ \cdot \left(-4 \cdot b \cdot L_1 + 4 \cdot d \cdot L_2\right)$
$\partial N_2 / \partial y$	$rJ \cdot (4 \cdot a \cdot L_1 - 4 \cdot c \cdot L_2)$
$\partial N_3/\partial x$	$rJ \cdot (b - 4 \cdot b \cdot L_2)$
$\partial N_3/\partial y$	$rJ \cdot (-a + 4 \cdot a \cdot L_2)$
$\partial N_4 / \partial x$	$rJ \cdot \left[4 \cdot (b-d) \cdot L_2 - 4 \cdot b \cdot L_3\right]$
$\partial N_4 / \partial y$	$rJ \cdot \left[4 \cdot (c-a) \cdot L_2 - 4 \cdot a \cdot L_3\right]$
$\partial N_5 / \partial x$	$rJ \cdot \left[(d-b) + 4 \cdot (b-d) \cdot L_3 \right]$
$\partial N_5 / \partial y$	$rJ \cdot \left[(a-c) + 4 \cdot (c-a) \cdot L_3 \right]$
$\partial N_6 / \partial x$	$rJ \cdot \left[4 \cdot (b - d) \cdot L_1 + 4 \cdot d \cdot L_3\right]$
$\partial N_6 / \partial y$	$rJ \cdot \left[4 \cdot (c-a) \cdot L_1 - 4 \cdot c \cdot L_3\right]$

Производные $\partial N_{eta}/\partial x$ и $\partial N_{eta}/\partial y$

Учитывая выражение (11), минимизацию функционала χ , формулу (6) можно представить в виде системы линейных алгебраических уравнений:

$$\sum_{e=1}^{E} \int_{V^{(e)}} \frac{1}{2} \cdot \left[B^{(e)} \right]^{T} \cdot \left[B^{(e)} \right] dV \cdot \{ \Psi \} = 0,$$

или

$$\left[k^{\left(e\right)}\right]\cdot\left\{\boldsymbol{\Psi}\right\}=0.$$
(17)

Каждый элемент матрицы $\lfloor k^{(e)} \rfloor$ определяется в соответствующем конечном элементе. Так как задача плоская, то интегрирование проводим по площади $A^{(e)}$ каждого элемента:

$$\left[k^{(e)}\right] = \frac{1}{2} \int_{A^{(e)}} \left[B^{(e)}\right]^T \cdot \left[B^{(e)}\right] dA^{(e)}.$$
(18)

где $A, B, \dots J$ – коэффициенты в виде чисел, полученные в результате перемножения матриц $\begin{bmatrix} B^{(e)} \end{bmatrix}^T \cdot \begin{bmatrix} B^{(e)} \end{bmatrix}$, используя выражение (11) и табл. 1.

Преимуществом использования L-координат является существование интегральных формул, упрощающих вычисление интегралов по его площади [1]:

$$\int_{A} L_1^a L_2^b L_3^c dA = \frac{a!b!c!}{(a+b+c+2)!} 2A.$$
 (20)

Результаты интегрирования выражения (19) с помощью формулы (20) приведены в табл. 2.

Для однозначного решения системы (17) необходимо задать узловые значения Ψ для тех узлов, для которых заданы граничные условия. Результаты расчетов показаны на рис. 3 – 4.

Рис. 3. Представление линий тока в расчетной области

Результаты интегрирования		
Интеграл	Результат интегрирования	
$\frac{1}{2} \int_{A^{(e)}} A dA^{(e)}$	$A \cdot A^{(e)}$	
$\frac{1}{2} \int_{A^{(e)}} BL_1 dA^{(e)}, \frac{1}{2} \int_{A^{(e)}} CL_2 dA^{(e)},$ $\frac{1}{2} \int_{A^{(e)}} DL_3 dA^{(e)}$	$\frac{1}{3}B \cdot A^{(e)}, \frac{1}{3}C \cdot A^{(e)}, \frac{1}{3}D \cdot A^{(e)}$	
$\frac{1}{2} \int_{A^{(e)}} EL_1 L_2 dA^{(e)}, \frac{1}{2} \int_{A^{(e)}} FL_2 L_3 dA^{(e)},$	$\frac{1}{12}E \cdot A^{(e)}, \frac{1}{12}F \cdot A^{(e)},$	
$\frac{1}{2}\int_{A^{(e)}}GL_1L_3dA^{(e)}$	$\frac{1}{12}G\cdot A^{(e)}$	
$\frac{1}{2} \int_{A^{(e)}} HL_1^2 dA^{(e)}, \frac{1}{2} \int_{A^{(e)}} IL_2^2 dA^{(e)},$ $\frac{1}{2} \int_{A^{(e)}} JL_3^2 dA^{(e)}$	$\frac{1}{6}H \cdot A^{(e)}, \frac{1}{6}I \cdot A^{(e)}, \frac{1}{6}J \cdot A^{(e)}$	

Рис. 4. Представление изменения модуля скорости в области течения

В описанном выше методе конечных элементов в отличие от метода конечных разностей вычисляем не искомые функции, а только их коэффициенты в разложениях по базисным функциям, что позволяет получать решение в любой точке области и повышает точность расчетов. Кроме того, можно отметить, что в некоторых случаях схемы метода конечных элементов обладают "суперсходимостью", т.е. точным решением задач в узлах сетки [4]. Метод позволяет использовать элементы с разными размерами. Это дает возможность измельчать расчетную область вблизи обтекаемых объектов [1]. При рассмотрении обтекания сложной криволинейной поверхности можно её аппроксимировать с помощью криволинейных элементов [2,3].

Метод конечных элементов обладает существенными преимуществами по сравнению с другими численными методами, применяемыми в задачах гидромеханики. Наибольший интерес представляет также применение описанного метода в трехмерных задачах обтекания сложных объектов вязкими газами.

Список литературы

- 1. Сегерлинд, Л. Применение метода конечных элементов [Текст] / Л. Сегерлинд М.: Мир, 1979. 392 с.
- 2. Стренг, Г. Теория метода конечных элементов [Текст] / Г. Стренг, Дж. Фикс. М.: Мир, 1977. 349 с.
- 3. Зенкевич, О. Конечные элементы и аппроксимация [Текст] / О. Зенкевич, К. Морган. М.: Мир, 1986. 318 с.
- Крашаница, Ю. А. Автоматизация теоретических и экспериментальных исследований в аэродинамике [Текст]: учеб. пособие / Ю.А. Крашаница, Д.П. Шаройко. – Х.: Нац. аэрокосм. ун-т "Харьк. авиац. ин-т.", 2003. – 129 с.
- Тюрев, В.В. Численные методы аэрогидродинамики [Текст]: учеб. пособие / В.В. Тюрев, В.А. Тараненко. – Х.: Нац. аэрокосм. ун-т. Н.Е. Жуковского "Харьк. авиац. ин-т.", 2013. – 180 с.

Рецензент: к.т.н., доц., проф. В. А. Грайворонский, Национальный аэрокосмический университет им. Н.Е.Жуковского «ХАИ», г. Харьков Поступила редакцию 14.01.2014

Рішення задач гідромеханіки методом кінцевих елементів

Описано застосування методу кінцевих елементів до розв'язання широко розповсюдженої в гідромеханіці задачі безвихрового обтікання тіла ідеальною рідиною. Двовимірну модель плину в розглянутому завданні сформовано з використанням квадратичних трикутних елементів. Рішення виконано шляхом мінімізації функціонала на безлічі вузлових значень функції струму з використанням L-координат. Наведено деякі особливості кінцево-елементних схем, корисних для вирішення задач гідромеханіки.

Ключові слова: квадратичний трикутний елемент, квадратичний поліном, функціонал, безвихровий плин, функції форми, матриця Якобі.

Decision problems in fluid mechanics by finite element method

The paper described application the finite element method to solve the problem of irrotational flow-around a body by an ideal liquid. The tow-dimentional model of current in a considered problem is generated with use of square law triangular elements. The solutions are found through minimization of the functional on set points of the stream function, with use of L-coordinates. The paper presented singularities finite elements schemes useful to solution of hydromechanics problems.

Keywords: square law triangular elements, square law polynomial, functional, irrotational flow, the barycentric coordinate system, the Jacobian matrix.