УДК 533.662.64: 621.548.4

В.Г. Лебедь, С.А. Калкаманов

Проектирование турбины для ветроэнергетических установок с концентраторами воздушного потока

Харьковский университет Воздушных Сил

Предложен численный метод проектирования турбины для ветроэнергетических установок с концентраторами воздушного потока. Приведены результаты расчетов, которые показывают преимущества использования концентраторов воздушного потока в ветроэнергетических установках.

Ключевые слова: проектирование, турбина, концентратор воздушного потока, среднегодовая скорость ветра

Современное развитие энергетики характеризуется ростом объёма использования экологически чистых и возобновляемых источников энергии, в частности энергетического потенциала ветра [1].

Использование ветроэнергетических установок (ВЭУ) для производства электрической энергии в промышленных масштабах наиболее эффективно в регионах, где среднегодовая скорость ветра (V_{cp}) больше 5 м/с. Так при V_{cp}=5 м/с технически допустимый потенциал ветра (энергия, снимаемая с одного квадратного метра площади ротора ВЭУ) на высоте H=15 м составляет всего 620 кВт·час/м² в год [2].

На преобладающей части территории Украины среднегодовая скорость ветра менее 5 м/с [2] и использование традиционных ветроэнергетических установок в этих регионах нерентабельно. Поэтому актуальными остаются вопросы разработки высокоэффективных методов отбора энергии из ветрового потока, в частности с использованием концентраторов воздушного потока [1].

К первому поколению концентраторов воздушного потока (КВП) относится ветровой диффузорный усилитель (ВДУ) [1]. По данным работы [3] для ветродвигателей с КВП 1-го поколения относительная мощность турбины, определяемая как:

$$\overline{N} = \frac{0.5 \cdot \rho \cdot V_t^3 \cdot S_t \cdot C_D}{0.593 \cdot 0.5 \cdot \rho \cdot V_\infty^3 S_t} = \frac{27}{16} \cdot \left(\frac{V}{V_\infty}\right)^3 \cdot C_D,$$

где $C_D = \frac{(P_{2,1} - P_{2,2})}{(0,5 \cdot \rho \cdot V_t^2)}; S_t$ - ометаемая площадь турбины;

 V_{∞} , V_t - скорости набегающего потока и потока за турбиной;

*P*_{2.1}, *P*_{2.2} - давление, соответственно, перед и за турбиной,

составляет *N* ≈3,5 при отношении длины КВП к диаметру турбины L/dt≈7. Однако, несмотря на повышение мощности на валу без увеличения диаметра турбины, ветроэнергетические установки с концентраторами воздушного потока 1-го поколения не получили широкого распространения вследствие громоздкости и высокой стоимости конструкции.

В 60-е годы ХХ столетия начались разработки ВДУ второго поколения, достаточно компактных и недорогих. Это было достигнуто за счет использования

щелевых диффузоров [3, 4]. Относительная мощность ветротурбины с ВДУ второго поколения составляет $\overline{N} \approx 2,6$ [3] при L/d_t=3 и отношении выходного диаметра диффузора d₃ к диаметру турбины d₃/d_t=2,5. Усовершенствование ВДУ привело к созданию КВП с L/d_t $\approx 1,0$ d₃/d_t=2,0 и $\overline{N} = 2$ [4].

Третье поколение КВП, основанное на использовании управления внутренним и внешним течениями воздуха в КВП, в настоящее время находится на стадии разработок. Для ветроэнергетической установки с КВП третьего поколения на рис.1 представлены зависимости мощности турбины N, безразмерного перепада давления на турбине $C_P = \frac{(P_{2,1} - P_{2,2})}{(0,5 \cdot \rho \cdot V_{\infty}^2)}$

относительной мощности \overline{N} от относительной скорости $\overline{V_t} = \frac{V_t}{V_{\infty}}$ в самом узком сечении КВП (в месте расположения турбины). При отсутствии турбины относительная скорость имеет максимальное значение $\overline{V}_t max$ =3,55. Расчеты проведены при расчетной скорости ветра V_{∞} =5,5 м/с по методике, изложенной в работе [5], для ВЭУ с КВП с L/dt=0,31 и d_3/dt=1,5 без учета расходов энергии на управление внутренним и внешним течением. На управление течением воздуха требуется соответственно N_6 =35 Вт и N_{6H} =64 Вт мощности. Мощность на валу ветротурбины с КВП без использования управления состоянием потока составляет 20 Вт, что является результатом значительных потерь энергии в диффузоре.

Рис. 1. Зависимости мощности, коэффициента перепада давления на турбине и относительной мощности от относительной скорости

Известные теоретические работы [4, 5, 6, 7] расчета ветроэнергетических установок с КВП не рассматривают вопросы проектирования турбины, находящейся внутри КВП.

Целью данной работы является разработка методики расчета геометрических параметров турбины ВЭУ с КВП. В основу методики расчета геометрических параметров ветротурбины с КВП положено условие, что оптимальные значения перепада давления и мощности турбины, определенные по импульсной теории и приведенные на рис.1, должны быть равны значениям, полученным по лопастной теории [8].

Анализ данных, приведенных на рис. 1 показывает, что оптимальные значения газодинамических параметров турбины имеют место при $\overline{V}_{t \ opt}$ =2,97.

Для полученных оптимальных значений параметров N_{opt} , $C_{P opt}$, $\overline{V}_{t opt}$ необходимо спроектировать турбину, то есть определить угловую скорость турбины (быстроходность турбины), число лопастей, геометрию лопасти (крутку и хорду), а также выбрать аэродинамический профиль для лопастей.

Представим турбину в виде винта с конечным числом лопастей и воспользуемся лопастной теорией [8, 9] расчета аэродинамических нагрузок на лопастях винта. Спроектируем аэродинамические силы, возникающие на лопастях, на ось вращения и на плоскость вращения винта. Тогда проекция силы тяги на ось вращения винта (рис. 2) должна равняться произведению величины перепада давления в плоскости винта на площадь турбины. Проекция сил лопастей на плоскость вращения создает крутящий момент, который при определенной угловой скорости вращения ω должен обеспечить оптимальную величину мощности N_{opt} . Следовательно:

$$F_X = S_t (P_{2,1} - P_{2,2}), \tag{1}$$

$$M_{\kappa p} \cdot \omega = N_{opt}, \tag{2}$$

где $F_X = z \int_{R_{em}}^{R} (C_{ya} \cos \beta + C_{xa} \sin \beta) \cdot 0.5 \cdot \rho V^2 b \, dr$ - проекция аэродинами-ческой

силы, возникающей на лопастях, на ось вращения турбины (рис. 2);

$$M_{\kappa p} = z \int_{R_{em}}^{R} (C_{ya} \sin\beta - C_{xa} \cos\beta) \cdot 0,5 \cdot \rho V^2 br \, dr - \kappa py t s m u m o m e h t$$

относительно оси вращения турбины (от аэродинамических сил);

z - число лопастей винта (турбины);

C_{ya}, *C_{xa}* - коэффициенты аэродинамических сил в сечениях лопастей (аэродинамические характеристики профиля лопасти);

b - хорда профиля; $V = \sqrt{(\omega r)^2 + V_{t \ opt}^2}$ - скорость набегающего на профиль лопасти потока;

V_{t opt} - скорость протекания воздуха через плоскость винта.

Разделим обе части уравнения (1) на $0.5\rho V_{\infty}^2 S_t$, а уравнения (2) - на $0.5\rho V_{\infty}^2 S_t d_{\theta}$, тогда система уравнений (1), (2) будет иметь вид:

$$F_X = C_{P \ opt},\tag{3}$$

$$M_{\kappa p} = N_{opt} . (4)$$

Рис. 2. Скорости и аэродинамические силы в сечении лопасти

Методика определения геометрических параметров турбины ВЭУ с КВП состоит из следующих этапов:

- из условия обеспечения максимальной угловой скорости вращения винта задается число лопастей \boldsymbol{z} ;

- из аэродинамических характеристик заданного профиля (рис.3) определяется наивыгоднейший угол атаки - *α*_{нв};

- вычисляется крутка лопасти (рис.2) - $\varphi = \alpha_{_{HG}} - \beta$;

- вычисляется хорда лопасти - $b = b_0(1 - (r - R_{em}) \cdot (\eta - 1)/(\eta \cdot (R - R_{em}))),$

где b_0 - хорда лопасти у её основания;

η - сужение лопасти;

R_{вт} - радиус втулки винта.

Рис. 3. Аэродинамические коэффициенты профиля лопасти в зависимости от угла атаки при числе Маха M_{∞} =0,0162

При заданном сужении лопасти η в системе уравнений (3), (4) неизвестными являются хорда b_0 и угловая скорость вращения ω . Система уравнений (3), (4) решается методом итераций [10, стр. 148].

В результате решения системы уравнений для профиля с заданными аэродинамическими характеристиками (рис. 3) и сужением η =2 была определена величина корневой хорды лопасти b_0 =0,23 м. Величина угловой скорости составила ω =84 рад/сек для V_{cp}=5,5 м/сек и ω =55 рад/сек для V_{cp}=3,5 м/сек. При таких оборотах ветроколеса передачу мощности от турбины к электрогенератору можно осуществлять без понижения оборотов, то есть без применения мультипликатора.

Необходимо отметить, что за счет средств активного управления внутренним и внешним потоками воздуха скорость перед турбиной у ветроэнергетической установки с КВП поддерживается практически постоянной в диапазоне набегающего потока V_{∞} =5,5...15 м/сек. Поэтому для ВЭУ с КВП третьего поколения отпадает необходимость в системе стабилизации частоты вращения ветротурбины.

При средней скорости ветра V_{ср}=5,5 м/сек, характерной для южных районов Украины [2], применение КВП с активной системой управления параметрами потока позволит обеспечить 800 кВт час электроэнергии в месяц при диаметре турбины 2,5 м. Для сравнения, месячная выработка электроэнергии трехлопастным ветрогенератором коаксиальной схемы FA-4.4/400 с диаметром ветроколеса 4,4 м составляет 500 кВт час.

На мощность турбины влияет большое число геометрических параметров КВП, средств управления и самой турбины, и мощность турбины нелинейно зависит от этих параметров. Поэтому на этапах предварительного проектирования ветроэнергетических установок с КВП необходимо широко использовать компьютерные технологии. Особенно это необходимо для разработки серии ВЭУ для соответствующего диапазона скоростей ветрового потока применительно для того или иного региона.

Выводы

Разработана методика проектирования ротора турбины ветроэнергетических установок с концентраторами воздушного потока. На основе разработанной методики проведены расчеты геометрических параметров ветроэнергетической установки с концентратором воздушного потока. Результаты расчетов показывают, что ветроэнергетическая установка с КВП и системой активного управления внутренним и внешним течениями воздуха позволяет почти в два раза уменьшить диаметр ротора по сравнению с ветроэнергетической установкой без КВП и более чем в 1,5раза увеличить мощность, снимаемую с вала ротора.

Список литературы

- 1. Казанджян Б.И., Мятов Ю.Г. Ветроэнергетические установки с концентраторами воздушного потока // Возобновляемые источники энергии: Сб. научных трудов Московского энергетического института. - М.: Моск. энерг. инс-т, 1990. - №233. – С. 143-148.
- 2. Атлас енергетичного потенціалу відновлюваних та нетрадиційних джерел енергії України: Енергія вітру, сонячна енергія, енергія малих рік, енергія біомаси, геотермальна енергія довкілля, енергія скидного енерготехнологічного

потенціалу, енергія нетрадиційного палива. Київ: Інститут електродинаміки НАН України, 2001. -69 с.

- 3. Игра О. Кожухи для ветродвигателей // Ракетная техника и космонавтика. 1976. № 10. С. 166- 168.
- Phillips D.G., Richards P. J., Flay R.G.J. Diffuser development for a diffuser augmented wind turbine using computational fluid dynamics. – Режим доступу: http://www.ipenz.org.nz/ipenz/publications/transactions/Transactions99/EMCh/ Phillips. PDF. – Заголовок з екрану.
- 5. Лебедь В.Г., Калкаманов С.А., Сушко А.Л. Оценка целесообразности использования концентраторов воздушного потока в ветроэнергетических установках // Інтегровані технології та енергозбереження: Щоквартальний науково-практичний журнал. Харків: НТУ «ХПІ», 2011. № 4. С. 73 88.
- Янсон В.П. Ветроустановки: Учебное пособие по курсам "Ветроэнергетика", "Энергетика нетрадиционных и возобновляемых источников энергии", "Введение в специальность". Под ред. Осипова М.И. – М.: МГТУ им. Н.Э. Баумана, 2007 – 36 с.
- 7. Хомяков А.Н. Профилирование осесимметричных диффузоров с безотрывным полем течения // Тезисы докладов научной конференции «Ломоновские чтения». М.: МГУ им. М.В. Ломоносова, 2009. С.149.
- Сучасні методи дослідження аеродинаміки та динаміки польоту. Навч. посібник.
 В.Г. Лебідь, С.А. Калкаманов, І.Б. Ковтонюк, Д.М. Обідін, А.Л. Сушко Х.: ХУПС, 2009. 142 с.
- 9. Кривцов В.С, Олейников А.М., Яковлев А.И. Неисчерпаемая энергия. Книга 2. Х.: НАКУ «ХАИ», 2004. 518 с.
- 10. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1966. 664 с.

Рецензент: д-р техн. наук, СНС Е.А. Украинец, Харьковский университет Воздушных Сил

Поступила в редакцию 07.05.12

Проектування турбіни для вітроенергетичних установок з концентраторами повітряного потоку

Запропоновано чиселовий метод проектування турбіни для вітроенергетичних установок з концентраторами повітряного потоку. Наведено результати розрахунків, які показують переваги використання концентраторів повітряного потоку у вітроенергетичних установках.

Ключові слова: проектування, турбіна, концентратор повітряного потоку, середньорічна швидкість вітру.

Design of turbines for wind turbines with a concentrators of air flow

A numerical method for designing turbines for wind power plants with concentrators airflow. The results of calculations that show the benefits of using concentrators air flow in wind power plants.

Keywords: design, the turbine, the hub of air flow, the average wind speed.