УДК 629.735.33 (07)

Д.В. Тиняков

Интегрированное формирование геометрических параметров системы несущих поверхностей на этапе предварительного проектирования самолетов транспортной категории

Предложен метод интегрированного формирования системы несущих поверхностей (крыло + хвостовое оперение) самолета транспортной категории, полукрыло которого по виду в плане образовано двумя, тремя и четырьмя трапециями. На основе полученного в работе уравнения связи устанавлена зависимость геометрических параметров крыла и хвостового оперения с одним из частных критериев эффективности крыла – коэффициентом его формы – К_{фм}.

Ключевые слова: несущие поверхности самолета, геометрические параметры, оптимизация, эффективность.

Введение

Основной несущей поверхностью самолета, естественно, является его крыло. В самолетах транспортной категории при проектировании в подавляющем большинстве случаев прибегают к системе несущих поверхностей, в которую кроме крыла входят горизонтальное и вертикальное оперение (рис. 1).

Рис. 1. Системы несущих поверхностей тяжелых самолетов транспортной категории

Действующие на несущие поверхности самолета нагрузки и величины их плеч должны уравновешивать силы гравитации G и тяги двигателей Р_{дв}, изменяющиеся в зависимости от режима полета (рис. 2).

Рис. 2. Плечи сил, действующих на самолет в плоскости хоу

В теории [1] и практике [2, 3] проектирования самолетов транспортной категории уже установили оптимизированный вариант взаимосвязи параметров крыла и агрегатов хвостового оперения в виде выражения

$$\overline{S}_{x_{6,0}} = \overline{S}_{z_0} + \overline{S}_{g_0} = A_{z_0} \cdot \frac{b_{cax}}{L_{z_0}} + B_{g_0} \frac{\ell}{L_{g_0}},$$
(1)

где b_{сах} и *l* – средняя аэродинамическая хорда и полный размах крыла;

Аго и Вго – коэффициенты статических моментов;

S_{го}, S_{во} – относительные площади горизонтального и вертикального оперений.

В выражении (1) присутствуют параметры A_{го} и B_{во}, которые представляют собой статические моменты, характеризующие агрегаты хвостового оперения по их влиянию на самолет относительно его центра масс.

Так как величина $A_{ro} = \overline{S}_{ro}\overline{L}_{ro}$ является произведением величины \overline{S}_{ro} и \overline{L}_{ro} , то её необходимое значение может быть получено либо с помощью большей площади горизонтального оперения и меньшего плеча ГО или, наоборот, посредством увеличения плеча ГО и уменьшения площади S_{ro} .

Считается, что с ростом плеча L_{ro} эффективность горизонтального оперения и продольная управляемость самолета пропорционально увеличиваются и что коэффициент демпфирования и степень затухания продольных колебаний самолета пропорциональны L_{ro}^2 . Однако увеличение плеча горизонтального оперения вызывает увеличение длины фюзеляжа, а это всегда связано с большими весовыми затратами, чем увеличение площади оперения [3].

На величины L_{го} и S_{го} существенное влияние оказывают и геометрические параметры основного агрегата в системе несущих поверхностей — крыла. Известен подход к установлению и анализу взаимосвязи параметров крыла и хвостового оперения для самолетов с простыми формами гладкого крыла [4], образованных одной трапецией.

Однако в практике создания самолетов транспортной категории весьма часто используют крылья, план которых образован двумя (Ан-24...Ан-32), тремя (Ан-124) и даже четырьмя (В-747) трапециями.

Цель и задачи исследования

С учетом приведенных обстоятельств целью данной работы является интегрированное формирование геометрических параметров системы несущих поверхностей самолетов транспортной категории, план крыльев которых по полуразмаху образован несколькими трапециями, а также дополнительными "наплывами" по передней (или задней) кромке.

Решение поставленной задачи

Эффективность системы "крыло + хвостовое оперение", естественно, определяется, прежде всего, совершенством крыла. В самолетах транспортной категории, как правило, используют трапециевидные крылья с одной, двумя, иногда с тремя координатами излома z_н (рис. 3).

Рис. 3. Формы и параметры трапециевидных крыльев: а – простое крыло; б – составное крыло с одной координатой излома; в – составное крыло с двумя координатами излома по полуразмаху

Из параметров, входящих в выражение (1), наиболее важным является средняя аэродинамическая хорда — b_{cax}, значение которой (для крыла, показанного на рис. 2, б) представим в следующем виде:

$$b_{cax.c} = b_{cax.1}\overline{S}_1 + b_{cax.2}\overline{S}_2, \qquad (2)$$

где

$$b_{cax1} = \frac{4}{3} \cdot \frac{\eta_1^2 + \eta_1 + 1}{z_H \cdot (\eta_1 + 1)^2} \cdot \overline{S}_1 \sqrt{\frac{S_{\kappa p}}{\lambda}}, \qquad (3)$$

$$b_{cax.2} = \frac{4}{3} \cdot \frac{\eta_2^2 + \eta_2 + 1}{(1 - \bar{z}_H) \cdot (\eta_2 + 1)^2} \cdot \bar{S}_2 \sqrt{\frac{S_{\kappa p}}{\lambda}}.$$
 (4)

Относительные величины площадей трапеций, образующих план полуразмаха крыла

$$\overline{S}_{I} = \overline{S}_{Hi} \cdot \frac{\eta_{2} + \eta}{\eta - \eta_{mp}}, \tag{5}$$

$$\overline{S}_2 = \frac{(1 - \overline{z}_H)}{\overline{z}_H} \overline{S}_H \cdot \frac{\eta_2 + 1}{\eta - \eta_{mp}},$$
(6)

$$\eta_1 = \frac{\eta}{\overline{z}_{\mu} + \eta_{mpi}(1 - \overline{z}_{\mu})},\tag{7}$$

$$\eta_2 = \overline{z}_{_H} + \eta_{mpi}(1 - \overline{z}_{_H}), \tag{8}$$

где b_{cax1}, b_{cax2}, η₁, η₂ – средние аэродинамические хорды и сужения трапеций, образующих план крыла;

S_{кр}, S₁, S₂ – суммарная и составляющие площади полуразмаха крыла.

В свою очередь, b_{cax}, входящая в выражение (1), в существенной мере зависит от удлинения крыла λ и его общего сужения η [1].

Для исследования их влияния на $S_{xB.o}$ найдем экстремум функции $\overline{S}_{xB.o} = f(\lambda, \eta)$, решив систему уравнений:

$$\begin{cases} \overline{S'}_{x_{B,O}}(\eta) = 0\\ \overline{S'}_{x_{B,O}}(\lambda) = 0 \end{cases}$$
(9)

После дифференцирования выражения (1) по λ и η, приняв во внимание, что коэффициент формы крыла рассматриваемого типа оценивается выражением [5]

$$K_{\phi 10} = \frac{4}{3} \frac{(\eta_2^2 + \eta_2 \cdot \eta - \eta_2 - 1)\overline{z}_{\mu} + \eta_2^2 + \eta_2 + 1}{(\eta - 1)\overline{z}_{\mu} + \eta_2 + 1},$$
(10)

получим

$$\lambda_{g\phi} = K_{\phi 10} \cdot \frac{A_{go} L_{go}}{L_{go} B_{go}}, \qquad (11)$$

$$\overline{S}_{x_{\theta} \ o \ min} = 2 \cdot \sqrt{K_{\phi 10}} \cdot \sqrt{\frac{A_{zo} B_{\theta o}}{L_{zo} L_{\theta o}}} S_{\kappa p} \ . \tag{12}$$

Эти значения удлинения крыла $\lambda_{3\phi}$ и площади хвостового оперения $\overline{S}_{xB. o min}$ и обеспечивают системе несущих поверхностей самолета с крылом, показанным на рис. 3, б, минимальную величину индуктивного сопротивления [4].

Выражения (11), (12) получены для составного крыла с одной координатой излома, план которого образован двумя трапециями. Однако в практике создания самолетов транспортной категории используют и простые трапециевидные крылья (рис. 3, а), и крылья, полуразмах которых образован тремя трапециями (рис. 3, в). Если аналогично (2) определить для них значения b_{cax} , а затем продифференцировать (1) по λ и η и учесть величины коэффициентов их форм $K_{\phi M}$, то получим данные, приведенные в табл. 1.

Таблица 1

Влияние коэффициента формы крыла К_{ф1...12} на взаимозависимость параметров крыла и оперения в системе несущих поверхностей самолета

Форма крыла по виду в плане	Сужения крыла	Коэффициент формы крыла К _{фм}	Условия связи параметров крыла и оперения
Простое трапециевидное (одна трапеция, рис. 3, а)	∞ > η > 1,0	$K_{\text{p1}} = \frac{4}{3} \frac{\eta_{\text{rp}}^2 + \eta_{\text{rp}} + 1}{(\eta_{\text{rp}} + 1)^2}$	$\begin{split} \lambda &= K_{\Phi 1} \cdot \frac{A_{ro} L_{BO}}{L_{ro} B_{BO}} \; , \\ \overline{S}_{\text{xB o min}} &= 2 \cdot \sqrt{K_{\Phi 1}} \cdot \sqrt{\frac{A_{ro} B_{BO}}{L_{ro} L_{BO}}} S_{KP} \end{split}$
Составное с одной координатой излома z _н (две трапеции, рис. 3, б)	$ η_1 > 1,0 $ $ η_2 > 1,0 $ $ ∞ > η > 1,0 $	$K_{\phi 10} = \frac{4}{3} \frac{(\eta_2^2 + \eta_2 \eta - \eta_2 - 1)\overline{z}_{\mu} + \eta_2^2 + \eta_2 + 1}{(\eta - 1)\overline{z}_{\mu} + \eta_2 + 1}$	$\begin{split} \lambda &= K_{\varphi 10} \cdot \frac{A_{ro}L_{B0}}{L_{ro}B_{B0}} \ , \\ \overline{S}_{xB \ o \ min} &= 2 \cdot \sqrt{K_{\varphi 10}} \cdot \sqrt{\frac{A_{ro}B_{B0}}{L_{ro}L_{B0}}S_{kp}} \end{split}$
Составное с двумя координатами излома z _{н1} и z _{н2} (три трапеции, рис. 3, в)	$\begin{array}{l} \eta_1 > 1, 0 \\ \eta_2 > 1, 0 \\ \eta_3 > 1, 0 \\ \infty > \eta > 1, 0 \end{array}$	$K_{\varphi 12} = \frac{4}{3} \frac{(\eta^2 + \eta_2 \cdot \eta_3 \cdot \eta - \eta_2 \eta_3^2 - \eta_3^2) \overline{z}_{\text{H}1} + (\eta_2^2 \cdot \eta_3^2 + (\eta_2 \eta_3^2 - \eta_3 - 1) \overline{z}_{\text{H}2} + (\eta_3^2 + \eta_3 + 1)}{[(\eta - \eta_3) \overline{z}_{\text{H}1} + (\eta_2 \cdot \eta_3 - 1) \cdot \overline{z}_{\text{H}2} + (\eta_3 + 1)]^2}$	$\begin{split} \lambda &= K_{\varphi 12} \cdot \frac{A_{ro}L_{Bo}}{L_{ro}B_{Bo}} \ , \\ \overline{S}_{xB \ o \ min} &= 2 \cdot \sqrt{K_{\varphi 12}} \cdot \sqrt{\frac{A_{ro}B_{Bo}}{L_{ro}L_{Bo}}} S_{kp} \end{split}$

Из данных, представленных в этой таблице, следует, что условия связи параметров крыла и оперения, обеспечивающие минимум индуктивного сопротивления, приведенные в выражениях (11) и (12), являются обобщающими для всех форм крыла по виду в плане.

В выражения (11) и (12) входит безразмерная величина коэффициента формы крыла по виду в плане К_{фм}.

Исследуем ее влияние на изменение условий связи геометрических параметров крыла и оперения. На рис. 4 показано изменение величины $K_{\phi 10}$ при переменных значениях \overline{Z}_H , \overline{S}_H , η_2 и η . Как видим, $K_{\phi 10}$ изменяется в достаточно широком диапазоне от 1,0 до 1,23. При этом следует иметь в виду, что критерием эффективности изолированного крыла является условие $K_{\phi M} = 1,081$, что обеспечивает на крыле эллиптический закон циркуляции скоростей обтекания крыла.

Рис. 4. Зависимость $K_{\varphi 10}$ от сужения η и координаты излома $\overline{Z}_{_{H}},$ площади наплыва $\overline{S}_{_{H}}$ и сужения η_2

Поскольку в данной работе исследуется интегрированное формирование геометрических параметров системы "крыло + оперение", то на рис. 5 показаны обобщенные области применимости коэффициента формы крыла К_{фм} при выборе геометрических параметров различных форм крыла в системе несущих поверхностей самолета.

На этом рисунке обозначены различные формы крыла, удовлетворяющие условиям (11) и (12). Одиннадцатый вариант полностью аналогичен десятому, только с отрицательной величиной \overline{S}_{H} , а восьмой вариант также аналогичен десятому, только с прямоугольным центропланом ($\eta_1 = 1,0$).

Рис. 5. Области существования различных форм крыла по виду в плане с одной координатой излома $\overline{Z}_{_{H}}$: $1 \ge \overline{S}_{_{H}} > 0$ и $-1 < \overline{S}_{_{H}} < 0$ при $\eta_1 \ge 1$, $\eta_2 - \text{const}$

На основе полученных результатов представляется возможным проводить оценку эффективности различных форм крыла по виду в плане. Для примера в табл. 2 приведены сравнительные данные о параметрах двух форм в плане гладких крыльев: простого трапециевидного (рис. 3, а) и составного, план которого образован двумя трапециями (рис. 3, б) в системе несущих поверхностей "крыло + оперение" при $\frac{A_{ro}B_{BO}}{L_{ro}L_{BO}}$ – const и площади крыла S_{кр} = 100 м². Указанные в табл. 2

параметры играют важную роль при оптимизации самолета на ранних стадиях проектирования, поскольку они влияют на прочностные, весовые и аэродинамические характеристики, на объемы крыльевых топливных баков, размещение систем и агрегатов в крыле, компоновки механизации и поверхностей управления, размещение силовых установок и др.

Таблица 2

		Ropuquiti I			
№ п/п	Параметры и коэффициенты	3	10	- <u> </u>	Влияние
1	К _{фм}	1,083	1,107	+0,054(+5%)	Для справки К _{ф.э} = 1,081
2	2√К _{фм}	2.081	2.133	+0,054(+5%)	На величину $\overline{S}_{_{xb.o.min}}$
3	η	трапеция 3	составное 4,145	+1,145, (+38,17)	На массу и крыло
4	λ	9	9,489	+0,489, (+5,43)	На величину С _{хі} и другие параметры.
5	$\frac{C_{xi}}{C_y^2}$	0,0359	0,0349	-0,001, (-2,79)!	На С _х самолета
6	L, м	30,000	30,805	+0,805, (+2,68)	Выполняется условие $\lambda_{\mbox{\tiny KPUT}} = \lambda$
7	b _{борт.} , м	4,692	5,096	+0,404, (+8,61)	Существенное влияние на
8	$\overline{C}_{борт.}$, %	15		-	объемные для топлива
9	С _{борт.} , м	0.704	0.764	+0,064, (+8,52)	характеристики и компоновку крыльевых систем
10	$\overline{S}_{_{\text{XB.o.min}}}$, M	40	40,86	+0,86, (+2,15)	На выполнение условий связи S _{го} = S _{во}
11	b _{cax} , м	3,611	3,688	+0,077, (+2,13)	На диапазон эксплуатационных центровок

Сравнительная оценка основных геометрических параметров 3-го и 10-го вариантов крыла

Сопоставляя полученные результаты, можно сделать вывод, что для дальнейшей оптимизации схемы самолета на основе поиска баланса компромиссов между аэродинамическими, прочностными, весовыми, объемными и другими характеристиками предпочтителен вариант 10.

Выводы

Предложен метод интегрированного формирования системы несущих поверхностей "крыло + хвостовое оперение" самолета транспортной категории, полукрыло которого по виду в плане образовано двумя, тремя и четырьмя трапециями.

Отличительная особенность метода заключается в том, что получено уравнение связи

$$\frac{\ell^2}{S_{\kappa p}} = K_{\phi, I-12} \frac{A_{co} L_{60}}{L_{co} B_{60}} = \lambda_{9\phi},$$

устанавливающего зависимость геометрических параметров крыла и хвостового оперения

$$\overline{S}_{x6\ o\ min} = 2 \cdot \sqrt{K_{\phi, l-l2}} \cdot \sqrt{\frac{A_{zo}B_{6o}}{L_{zo}L_{6o}}} S_{\kappa p}$$

с одним из частных критериев эффективности крыла – коэффициентом его формы – К_{фм}.

С учетом этих зависимостей появилась возможность проводить сравнительную оценку влияния на параметры хвостового оперения не только различных форм крыла, но и отдельных его параметров, играющих важную роль при оптимизации самолета на ранних стадиях проектирования и влияющих на прочностные, весовые аэродинамические характеристики, на объемы крыльевых топливных баков, размещение систем, агрегатов по крылу, определения компоновки механизации, поверхностей управления, размещения силовых установок и др. Так, например, установлено, что десятый вариант крыла позволяет изменять в широком диапазоне величин $0 \le \overline{z}_{\rm H} \le 0,446$ при $2,9 \le \eta_{\rm opt} \le 3,31$ и $-0,2 \le \overline{S}_{\rm H} \le 0$, обеспечивая минимальную величину $S_{\rm XB o}$.

Если иметь в виду, что площадь крыла S_{кр} и его удлинение λ определяются раньше параметров хвостового оперения, а оптимальная величина коэффициента формы крыла К_{фм} составляет 1,081, то на основании уравнения связи (11) представляется возможным решение обратной задачи – определение

обобщенного параметра $\frac{A_{ro}L_{BO}}{L_{ro}B_{BO}}$ для агрегатов хвостового оперения,

обеспечивающего системе несущих поверхностей самолета минимальную величину индуктивного сопротивления.

Список литературы

1. Кюхеман, Д. Аэродинамическое проектирование самолетов [Текст]/ Д.Кюхеман. – М.: Машиностроение, 1983. – 367 с.

2. Егер, С.М. Проектирование самолетов [Текст]/ С.М. Егер, В.Ф. Мишин, Н.К. Лисейцев. – М.: Машиностроение, 1983. – 616 с.

3. Торенбик, Э. Проектирование дозвуковых самолетов [Текст]: пер. с англ. Е.П. Голубкова/ Э. Торенбик. – М.: Машиностроение, 1983. – 648 с.

4. Масько, О.Н. Моделирование связи геометрических параметров крыла и хвостового оперения на этапе предварительного проектирования самолета [Текст] / О.Н. Масько, В.И. Новиков, В.В. Утенкова // Вісті Академії наук України.–2007.– Вып. 3(33). – С. 212-219.

5. Утенкова, В.В. Понятие коэффициента формы крыла самолета в плане и модели его определения [Текст] / В.В. Утенкова // Вопросы проектирования и производства конструкций летательных аппаратов: сб. науч. тр. Нац. аэрокосм. унта им. Н.Е. Жуковского "ХАИ". – Вып. 41(2) – Х., 2005.

Рецензент: д-р техн. наук, проф. В.Н. Кобрин, Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ», г. Харьков

Поступила в редакцию 14.03.12

Интегрированное формирование геометрических параметров системы несущих поверхностей на этапе предварительного проектирования самолетов транспортной категории

Запропоновано метод інтегрованого формування системи несучих поверхонь (крило + хвостове оперення) літака транспортної категорії, напівкрило якого за виглядом в плані утворено двома, трьома й чотирма трапеціями. На основі отриманого в роботі рівняння зв'язку встановлено залежність геометричних параметрів крила й хвостового оперення з одним із частинних критеріїв ефективності крила – коефіцієнтом його форми – К_{фм}.

Ключові слова: несучі поверхні літака, геометричні параметри, оптимізація, ефективність.

Интегрированное формирование геометрических параметров системы несущих поверхностей на этапе предварительного проектирования самолетов транспортной категории

It is proposed the method of the integrate shaping of lifting surfaces system (wing + tail unite) of the transport category airplane, which the half-wing is shaped by two, three and four trapezoids from the top-view. On the basis of the coupling equation, fixing dependence of geometrical parameters of a wing and tail unite with the one of efficiency partial criteria of a wing – the factor of its shape – $K_{\phi M}$ which received in this article.

Keywords: lifting surfaces of the airplane, geometric parameters, optimisation, efficiency.