r

Методика построения областей устойчивости системы стабилизации ракеты-носителя по переходным процессам

Национальный аэрокосмический университет им. Н.Е. Жуковского «ХАИ»

Постановка проблемы

Проблема устойчивости является основной при проектировании систем стабилизации (СС) носителей космических аппаратов, так как выбор всех параметров СС и некоторых конструктивных параметров ракеты-носителя (РН) целиком подчинен требованиям устойчивости движения.

Методика построения областей устойчивости СС РН в плоскости двух параметров по упрощенным условиям устойчивости описана в работе [1]. Результаты исследований по определению границ устойчивости СС РН корневым методом приводятся в работе [2], однако применение данной методики возможно лишь для линейных систем. В настоящей статье приведена методика построения областей устойчивости на базе переходных процессов, применение которой возможно как для линейных, так и для нелинейных систем.

Объект и цель исследования

Движение статически неустойчивой упругой РН в канале рыскания, устойчивость которой обеспечивается автоматом стабилизации, можно описать следующей системой дифференциальных уравнений [2]:

$$\begin{split} \ddot{\psi} &= a_{\psi z} \dot{z} + a_{\psi \psi} \dot{\psi} + a_{\psi \psi} \psi + a_{\psi \delta} \delta_{\psi} + \sum_{i=1}^{4} (a_{\psi s_{\psi i}} \ddot{s} + a_{\psi s_{\psi i}} s_{\psi_i}); \\ \ddot{z} &= a_{zz} \dot{z} + a_{z\psi} \dot{\psi} + a_{z\psi} \psi + a_{z\delta} \delta_{\psi} + \sum_{i=1}^{4} (a_{zs_{\psi i}} \ddot{s}_{\psi_i}); \\ \ddot{s}_{\psi i} + \varepsilon_{s_{\psi i}} \dot{s}_{\psi i} + \omega_{s_{\psi i}}^{2} s_{\psi_i} = a_{s_{\psi i z}} \ddot{z} + a_{s_{\psi i} \psi} \ddot{\psi} + a_{s_{\psi i} \psi} \psi; \quad (1) \\ \ddot{q}_{j} + \varepsilon_{q_{j}} \dot{q}_{j} + \omega_{q_{j}}^{2} q_{j} = a_{q_{j} \delta_{\psi}} \delta_{\psi}; \\ \psi^{2cn} &= \psi + \sum_{j=1}^{2} a_{\psi q_{j}}^{2n} q_{j}; \\ T_{2} \ddot{\delta} + T_{1} \dot{\delta} + \delta = K_{\phi} \psi + K_{\phi} \dot{\psi} - K_{z} \dot{z} - K_{z} z, \end{split}$$

где ψ - отклонение угла рыскания ракеты как твердого тела от программного значения; z- отклонение центра масс от программного значения; δ - угол отклонения управляющих органов; q - координата, характеризующая поперечные

упругие колебания корпуса ракеты в месте установки датчика угла рыскания, $\psi^{_{ccn}}$ угол рыскания, измеряемый датчиком угла; a_{ii} - коэффициенты; T_1, T_2 - постоянные времени АС; K_{ϕ} - коэффициент усиления по каналу рыскания, $K_{\phi} = T_d K_{\phi}$; T_d постоянная времени дифференцирования; К₂ - коэффициент усиления по скорости отклонения центра масс; і – количество тонов упругих колебаний; јколичество баков с топливом. Параметры $T_1, T_2, K_{\phi}, K_{\phi}, T_d$ имеют существенные случайные разбросы (превышающие 20%).

Цель данного исследования: построить в координатах $K_{\psi}-T_d$ область устойчивости объекта (найти верхнюю и нижнюю границы устойчивости) по переходным процессам.

Методика исследования

Определение области устойчивости по переходным процессам

 $W_0' = W_0;$ $W_1' = W_{10};$ $W_2' = W_{11};$ $W_3' = W_{12};$ $W_{4}' = W_{13};$ $W_{5}' = W_{14};$ $W_{6}' = W_{15};$ $W_7' = W_{16};$ $W_8' = W_{17}$: $W_{9}' = a_{\mu\nu\nu}W_{0} + a_{\mu\nu\nu}'W_{9} + a_{\mu\nu\delta}W_{8} + a_{\mu\nu}'W_{10} + a_{\mu\nu\delta}W_{2} + a_{\mu\delta}W_{3} + a_{\mu\delta}W_{4} + a_{\mu\delta\nu}W_{5} + a_{\mu\delta\nu}'W_{20} + a_{\mu\delta\nu}'W_{21} + a_{\mu\delta\nu}'W_{22} + a_{\mu\delta\nu}'W_{23};$ $W_{10}' = a_{zw}W_0 + a_{zw}'W_9 + a_{z\delta}W_8 + a_{zz}'W_{10} + a_{zs}''W_{20} + a_{zs}''W_{21} + a_{zs}''W_{22} + a_{zs}''W_{23};$ $W_{11}' = a_{sw_1}W_0 - \omega_{sw_1}^2W_2 - \varepsilon W_{11} + a_{sw_1}''W_9 + a_{sw_1}''W_{10};$ $\int W_{12}' = a_{s\psi_2} W_0 - \omega_{s_{w_2}}^2 W_3 - \varepsilon_{sw_2} W_{12} + a_{s_{w_2}\psi}' W_9 + a_{s_{w_2}z}' W_{10};$ (2) $W_{13}' = a_{s\psi_3}W_0 - \omega_{s_{\psi_3}}^2 W_4 - \varepsilon_{s_{\psi_3}}W_{13} + a_{s_{\psi_3}\psi}'' W_9 + a_{s_{\psi_3}z}'' W_{10};$ $|W_{14}' = a_{s\psi_4}W_0 - \omega_{s\psi_4}^2W_5 - \varepsilon_{s\psi_4}W_{14} + a_{s\psi_4}''W_9 + a_{s\psi_4}''W_{10};$ $W_{15}' = a_{a,\delta}W_8 - \omega_a^2 W_6 - \varepsilon_a W_{15};$ $W_{16}' = a_{a_2\delta}W_8 - \omega_{a_2}^2W_7 - \varepsilon_{a_1}W_{16};$ $W_{17}' = \frac{K_{\psi}}{T_2} W_0 + \frac{K_{\psi}}{T_2} W_9 + \frac{K_{\psi} a_{\psi q_1}}{T_2} W_{15} + \frac{K_{\psi} a_{\psi q_2}}{T_2} W_{16} + \frac{K_{\psi} a_{\psi q_1}}{T_2} W_6 + \frac{K_{\psi} a_{\psi q_2}}{T_2} W_7 - \frac{T_1}{T_2} W_{17} - \frac{1}{T_2} W_8 - \frac{K_z}{T_2} W_1 - \frac{T_z}{T_2} W_{10};$ $W_{9}' = W_{18};$ $W_{10}' = W_{19};$ $W_{11}' = W_{20};$ $W_{12}' = W_{21};$ $W_{13}' = W_{22};$ $W_{14}' = W_{23}.$ 133

Исходная система (1) 2-го порядка преобразуется в стандартную систему дифференциальных уравнений 1-го порядка (2) с помощью замены переменных: $\psi = W_0, z = W_1, s_1 = W_2, s_2 = W_3, s_3 = W_4, s_4 = W_5, q_1 = W_6, q_2 = W_7, \delta = W_8;$ $\psi' = W_9, z' = W_{10}, s'_1 = W_{11}, s'_2 = W_{12}, s'_3 = W_{13}, s'_4 = W_{14}, q'_1 = W_{15}, q'_2 = W_{16}, \delta' = W_{17};$ $\psi'' = W_{18}, z'' = W_{19}, s''_1 = W_{20}, s''_2 = W_{21}, s''_3 = W_{22}, s''_4 = W_{23}.$

Система (2) интегрируется на интервале [0..*T*] с заданными начальными условиями:

 $\psi(0) = 0.0025, z(0) = 0, q_i(0) = 0, s_k(0) = 0, \delta(0) = 0,$ где i = 0..2; k = 0..4.

Решение системы получается в виде значений функций F_{ji} (где i - момент времени на интервале [0..T]; j = 0..9 - число искомых функций, или решений уравнений системы - ψ , z, q_1 , q_2 , s_1 , s_2 , s_3 , s_4 , δ).

На основании полученного решения системы (2) строится график переходного процесса каждой функции. По сходимости переходных процессов определяется устойчивость системы при данных значениях коэффициентов (система устойчива, если процесс сходится, и неустойчива в обратном случае).

Для анализа сходимости переходного процесса вычисляются и сравниваются между собой значения площадей под кривой на начальном и конечном участках $[0...T_{begj}]$ и $[T_{end \ 1 \ j}...T_{end \ 2 \ j}]$ интервала [0...T]. Площадь под каждой кривой на заданных участках определяется по формулам

$$S_{beg_{j}} = \sum_{i=0}^{T_{beg_{j}}} [hy_{j,i-1} + 0.5h(y_{ji} - y_{j,i-1})] = \sum_{i=0}^{T_{beg_{j}}} [0.5(y_{ji} + y_{j,i-1})],$$
$$S_{end_{j}} = \sum_{i=T_{end_{1j}}}^{T_{end_{2j}}} [0.5(y_{ji} + y_{j,i-1})],$$

где h = 1 – шаг изменения времени t (зависит от частоты), y_i - значение функции в точке t = i; j = 0..9 - порядковый номер функции-решения.

Следовательно, система устойчива в случае выполнения условия

$$S_{beg} > S_{end}$$
 (3)

для каждой функции-решения.

 $[0..T_{begj}]$ - начальный участок интервала [0..T], на котором помещаются два первых периода j-й кривой, $[T_{end 1j}..T_{end 2j}]$ - конечный участок интервала [0..T], на котором помещаются два последних периода j-й кривой.

Полупериод кривой определяется как интервал между двумя соседними точками пересечения кривой и оси *OX*, т.е. интервал между двумя ближайшими точками кривой, в которых функция меняет знак на противоположный.

На рис. 1 и 2 приведены графики переходных процессов для значений параметров внутри области устойчивости и за верхней границей устойчивости соответственно. На рис. 1 условие (3) выполняется для всех функций, т.е. система устойчива. На рис. 2 условие (3) не выполняется для функции q_1 , т.е. система

неустойчива. Также на рис. 1 обозначены точки T_{begj} , $T_{end 1j}$, $T_{end 2j}$ для кривой f1.

Рис. 1. Переходные процессы при $K_{\psi} = 10$ и $T_d = 0.3$. Расположение точек T_{begj} , $T_{end 1j}$ и $T_{end 2j}$ для кривой f1

Для получения нижней и верхней границ устойчивости по переходным процессам необходимо:

• задать начальное значение параметра K_{ψ} и шаг его изменения $lpha_{K_{w}}$;

• задать начальное значение параметра T_d и начальный шаг его изменения \mathcal{Q}_{T_d} ;

• для текущих значений K_{ψ} и T_d найти точку внутри области устойчивости (в которой условие (3) выполняется для всех функций – решений системы (2));

• увеличивать значение параметра T_d с шагом α_{T_d} для нахождения точки, в которой условие (3) не выполняется хотя бы для одной из функций, с последующим уменьшением шага ($\alpha_{T_d} = \alpha_{T_d} \alpha$, где $\alpha = 0..0.5$) для получения более точного результата; найденная точка – точка верхней границы устойчивости в данном сечении по параметру K_w ;

• найти точки верхней и нижней границ устойчивости для других сечений (пошагово изменяя значение K_{ψ} шагом $\alpha_{K_{\psi}}$ и повторяя три предыдущих пункта).

Рис. 2. Переходные процессы при $K_{\psi} = 10$ и $T_d = 0.6$

Алгоритм построения области устойчивости

Блок-схема алгоритма определения точек на верхней и нижней границах устойчивости в сечении *К* _{*wi*} по переходным процессам представлена на рис. 3.

Определение верхней и нижней границ области устойчивости по переходным процессам:

1. Выбор начального сечения по параметру K_{ψ} =10, задание шага изменения параметра K_{ψ} $\mathcal{Q}_{K_{\psi}}$ =1.

2. Задание начального значения параметра T_d =0.3 и начального шага его изменения α_{T_d} =0.01.

Рис. 3. Блок-схема алгоритма определения точек на верхней и нижней границах устойчивости в сечении *К* _{*wi*} по переходным процессам

3. Поиск точки внутри области устойчивости: решение системы (2), определение границ интервалов T_{begj} , $T_{endj\,1}$, $T_{endj\,2}$ и проверка выполнения условия (3) для всех функций Y_j . В случае выполнения происходит переход к следующему шагу. В обратном случае выполняются изменение параметра T_d с шагом \mathcal{A}_{T_d} , решение системы уравнений (2) и проверка условия (3) до его выполнения (итерационный процесс).

4. Поиск точек верхней и нижней границ устойчивости для данного сечения:

- 4.1. Увеличение (для верхней границы) либо уменьшение (для нижней границы) значения параметра T_d с заданным шагом α_{T_d} .
- 4.2. Решение системы (2).
- 4.3. Определение границ интервалов T_{begi} , T_{endi1} и T_{endi2} .

4.3.1. Подсчет числа периодов кривой N_{nep} на интервале [0..T]. Переход к шагу 4.3.2, если $N_{nep} > 4$; увеличение интервала интегрирования $(T = 2 \cdot T)$ и возврат к шагу 4.2 в обратном случае.

4.3.2. Определение точки T_{begj} - точки четвертой по порядку смены знака функции на противоположный, начиная с точки t = 0.

4.3.3. Определение точки $T_{endj 2}$ - точки первой по порядку смены знака функции на противоположный, начиная с точки t = T.

4.3.4. Определение точки $T_{endj\,1}$ - точки пятой по порядку смены знака функции на противоположный, начиная с точки t = T.

- 4.4. Проверка условия (3) до тех пор, пока оно не будет выполняться хотя бы для одной из функций Y_j (т.е. переход к следующему шагу при $S_{beg_j} > S_{end_j}$); сохранение номера функции Y_j , для которой не выполнилось условие (3).
- 4.5. Уменьшение шага изменения параметра T_d : $\alpha_{T_d} = \alpha_{T_d} \alpha$, где $\alpha = 0.1$.
- 4.6. Повторное выполнение пунктов 4.1 4.5 до выполнения условия $\alpha_{T_d} < \alpha_{T_d dop}$ ($\alpha_{T_d dop} = 0.0005$).
- 4.7. Сохранение точки [K_{ψ_i}, T_{d_i}] точки соответствующей границы для данного сечения.

5. Переход к следующему сечению (изменение значения параметра K_{ψ} с заданным шагом $\mathcal{Q}_{K_{\psi}}$) и выполнение пунктов 4.1 – 4.7 для каждого сечения.

Результаты исследования

Номинальные значения и случайные разбросы параметров, соответствующие времени полета t=70 с первой ступени PH «Циклон-3», представленные научно-производственным предприятием «Хартрон-Аркос», приведены в табл. 1.

					Таблица 1
Параметр	Разброс, %	Значение	Параметр	Разброс, %	Значение
a'_{zz}	25	-0,0169	$\boldsymbol{\mathcal{E}}_{s1}$	5	0,228
$a'_{z\psi}$	5	-0,715	\mathcal{E}_{s2}	5	0,0497
$a_{z\psi}$	5	-36,09	\mathcal{E}_{s3}	5	0,0546
$a_{z\delta}$	5	-1,441	\mathcal{E}_{s4}	5	0,7493

				Окончание табл. 1				
Параметр	Разброс, %	Разброс, % Значение		Разброс, %	Значение			
a_{ψ_z}	4	0,0027	a_{ys1}	10	-0,0066			
$a'_{\psi\psi}$	10	-0,0616	$a_{\psi s2}$	10	-0,0121			
$a_{\psi\psi}$	30	1,8113	a_{ys3}	10	-0,0043			
$a_{\psi\delta}$	10	-0,295	a_{ys4}	10	-0,0041			
${\cal E}_{q1}$	15	0,2511	$a_{s\psi 1}$	10	-26.0652			
\mathcal{E}_{q2}	20	0,4005	$a_{s\psi 2}$	10	-26,9907			
ω_{q1}^2	35	247,8232	$a_{s\psi3}$	10	-32,5062			
ω_{q2}^2	45	630,5364	$a_{s\psi 4}$	10	-44,212			
$a_{q\delta 1}$	10	-2,4192	T_1	40	0,1108			
$a_{q\delta 2}$	10	-1,7115	T_2	40	0,002			
ω_{s1}^2	10	26.0652	T_d	20	0,5			
ω_{s2}^2	10	26,9907	K _z	50	0,009			
ω_{s3}^2	10	32,5062	K_z	40	0,009			
ω_{s4}^2	10	44,212	K _{\varphi}	30	10			

Закон распределения случайных разбросов всех коэффициентов – нормальный.

Математическим ожиданием каждого коэффициента m_{ij} является значение этого коэффициента при нулевых разбросах, среднеквадратичное отклонение σ_{ij} для каждого коэффициента a_{ij} находят по формуле $\sigma_{ij} = \frac{\Delta_{ij}}{3}$.

Результаты определения области устойчивости по переходным процессам приведены в табл. 2, полученная область устойчивости изображена на рис. 4. Для сравнения на рис. 4 пунктирной линией нанесены границы устойчивости, полученные корневым методом, а в табл. 3 представлены соответствующие значения параметров на границах устойчивости.

Таблица 2

K_{ψ}	10	11	12	13	14	15	16	17	18	19
Т _{д верхн}	0,555	0,520	0,490	0,465	0,445	0,425	0,410	0,395	0,385	0,370
Т _{д нижн}	0,170	0,150	0,135	0,130	0,125	0,120	0,115	0,115	0,115	0,115

Таблица 3	3
-----------	---

K_{ψ}	10	11	12	13	14	15	16	17	18	19
Т _{д верхн}	0,574	0,532	0,497	0,469	0,445	0,425	0,412	0,393	0,387	0,374
Т _{д нижн}	0,273	0,210	0,177	0,159	0,149	0,141	0,136	0,132	0,128	0,126

Выводы

1. Разработана методика построения области устойчивости объекта в плоскости двух параметров на базе переходных процессов.

2. Данный метод является более универсальным по сравнению с корневым методом [2], т. к. применим и для нелинейных систем.

3. Расхождения в границах устойчивости, полученных двумя различными способами, незначительны и обусловлены погрешностями алгоритмов решения данной задачи.

Список литературы

1. Айзенберг Я.Е., Сухоребрый В.Г. Проектирование систем стабилизации носителей космических аппаратов. – М.: Машиностроение, 1986. – 220 с.

2. Голубничая Е.С. Выбор оптимальной рабочей точки системы стабилизации ракеты-носителя по критерию вероятности устойчивости// Открытые информационные и компьютерные интегрированные технологии. - Х.: НАКУ «ХАИ». 2007. – Вып. 35. - С. 37 - 44.

3. Игдалов И.М., Кучма Л.Д., Поляков Н.В., Шептун Ю.Д. Ракета как объект управления: Учебник /Под ред. акад. С.Н. Конюхова. – Днепропетровск: АРТ-ПРЕСС, 2004.– 544 с.

4. Сухоребрый В.Г. Вероятностные методы проектирования технических объектов. – Х.: ХАИ, 1990. – 103 с.